AT AL 89 1=

Smart Home loT Forensics
-Study on Data Security and Challenges to Data Acquisition-
2utE 2 [oT Z 2

~dlol B RSk % HlolE 35 e) ek AAl -

Birhanu, Addisu Afework (23} o}t] 4= o} ¢ 3)
International Studies (= A &+3})
Legal Informatics and Forensic Science (74 1.1 284 3")
gl et o skl

Graduate School, Hallym University

Y Smart Home IoT Forensic . .
X Mol <l ol 0 1_ ul | AN
J.ﬁ ol o 1ﬂi f -Study on Data Security and Challenges to Data Acquisition- Birhanu Addisu Afework

SRS AL B9t

Smart Home loT Forensics
-Study on Data Security and Challenges to Data Acquisition-
2utE F [oT 2414

—dlolE ®et B dloly 5 ik sfd ek Al A -

Birhanu, Addisu Afework (23} ol t] 4= o} €])
International Studies (=5 #l| &+ 2})
Legal Informatics and Forensic Science (7 1.\ 2} 84 3")
gl et o skl

Graduate School, Hallym University

Z-5-21, Joshua 1. James 14| &=

FA A A} B9 =

WSl obt] 4 o}l 9 2Le) AAFELS] S

z;;jLzﬂ'_o_ff_ _\TL_}X% Sl

20191 64 28<

ERRD

o
e

SRR

r:[o
>

AALY Joshua L. James

Table of Contents

I TS o] i o UL =TSSR v
LEST OF TADIES ...ttt bbbt re s VI
I TSy o TS Vo SR VI
CHAPTER 1. INTRODUCTION ..ottt sttt st 1
1.1, BACKGIOUNG. ...ttt 1
1.2. 10T ECOSYStEM AN SECUITLYcovviviiiiiicieeieeeie e 3
1.3. 10T SECUNItY FrameWOTKccoviiiiiiiiieiieieieiees st 4
1.3.1. COMPANTON APPS ...ttt sttt sttt et se et e et b bt e b b e et be s 5
1.3.2. 10T BACKENd ClOUMooeiiiiieie e sttt nne s 8
1.3.3. 10T Communication and SECUKITY.........cccevviiieieieeie e 12
1.3.4. 10T Hubs and SENSOrs SECUNILYcciiiiiiiiiiie e 12

1.4, TNESIS STALEMENTveviiiiieieee ettt sb ettt re e 13
1.5. RESEAICH QUESTIONS ...ttt ettt b st te e ebe e sbe e sbe e saeesnne e 13
1.6, CONTFIDULION ...ttt bbbt ans 14
O I g T R ToTo] oL T OSSPSR 14
1.8, TNESIS STFUCTUIE ..ottt sttt reens 15
CHAPTER 2. BACKGROUND RESEARCH ... 16
2.1. Smart home I0T Devices Security and Privacy ISSUES..........cccoovirirenenenieneeeee 16
2.1.1. General 10T SECUNILY ISSUES.......cciiuiiiiieieiieise st 16
2.1.2. 10T Companion ApPS Data SECUNILYccccoviiiiriiiiiieeeesse s 18
2.1.3. 10T Backend Cloud APIS SECUFILYcccccveiiiiii e 19

2.2. Forensic Investigation of 10T ECOSYSIEMcccccveiiiiiciiieiecce e 21
2.3. 10T FOrensic ChallENgeScoiiieiiieeeeeee ettt 22
2.4, SUMIMATY ...ttt b ettt b et bt e bt ekt e eb e e s he e she e sabe e abe e be et e e sbeeebbeenbeanneebeens 23
CHAPTER 3. RESEARCH METHODOLOGYoooiiiiieiirieie e 24
3.1. FOllOWed RESEAICN PrOCESS......c.iiiveiicieeiiee sttt st ns 24
3.2. Followed ReSearch ProCEAUIEScccveviiiiie ettt st 25
3.2.1. 10T Android Companion (Client) Apps INVesStigationc.ccvcevverereieerennne. 25

3.2.2. Companion Apps Security Analysis using Reverse Engineeringccccccveueuee. 26

3.2.3. Companion Apps Live FOrensics ANalYSIS........ccoouirirereiniininineseseseeeeeenes 30

3.2.4. NetWOIrK INVESTIGATIONeouviiiiiiiiiiie et 31
3.2.5. Cloud API Security Analysis and DemO.........c.cccceviviiieiiiicie e 32
3.3. Demonstration Tool DeVEIOPMENTc.coiiiieie e 33
3.4. Required Research Materials and TOOIS..........ccccecevieieiiiiicie e 33
3.5. List Of 10T Case Studied DEVICESccoeieiririiriiie et 33
3.6. 10T Devices Set Up NEtWOrK DESIGNc.ccveiiiiiiiiiieieseeee e 34
3.7 ASSUIMPTIONS. ...ttt bbbttt b bbb b et 34
3.8 SUIMIMAIY ...t b et n R sb e r e e r e r e nenne e e nrs 35
CHAPTER 4. CASE STUDIES........ci oottt 36
4. 1. SKT NUGU AT SPEAKEToeiiitiiiiiteitete ettt 36
4.1.1. SKT Nugu (Aladdin) APP ANAIYSISccoeiiiiiiriieieieiee e 37
4.1.2. Nugu Al Speaker Device Network INvestigation............ccccovvevrireneneneienennnn 45
4.1.3. RESUITS ANGIYSIS ...ttt et 46
4.2, CloOVA Al SPEAKEeetiiii ettt sttt s be et ae e pe e ras 47
4.2.1. Naver Clova APP ANAIYSIS.......cciiiiiiiieiiisi e 48
4.2.2. Clova Al Speaker Device Network Investigationccccoocevvvicviieencse e, 57
4.2.3. RESUITS ANAIYSISccviiiiiiieciecc ettt s re et sresbe e sresteenre s 58
4.3. Xiaomi SMart HOME Kit........coiiiiiiiiieiecsescse et nne s 58
4.3.1. Mi HOME APP ANAIYSIS ...ccviiiiiiecicic sttt sre e 60
4.3.2. Xiaomi Lumi-gateway Network Investigation............cccccceveeveneiieieieese e, 68
4.3.3. RESUITS ANAIYSIS.....ccviiieiieitecie ettt st et sresbe e sresreenre 69
YT TSt Y o 1 T S RRSS 70
4.4.1. Pocket Mother APP ANALYSIS......ccoiiiiiiiiii e 72
4.4.2. Sen.Se Mother Network INVestigation.............ccocevereneieininis e 75
4.4.3. RESUITS ANAIYSIS ...ttt et bbbt 76
A5, SUIMIMAIY ..ottt bbbt st b bt e bt bt et sb e ke e bt s bt e s b e bt e aeenesbe e e e nrs 76
CHAPTER 5. RESULTS DISCUSSION......cciiiiiiiiiiieiieitie e 77
5.1. Companion Apps Data StOrage SECUTILYccocviirirererieieine s 78

5.2. Communication between Companion Apps and the Cloudccccoviiiiiinnnnne 79

5.3. Communication between 10T Devices/Hub and the Cloudccoccevvvvivevvinennnn. 81
5.4. 10T Cloud APIs Security INVESTIGAtIONccooviiiiiiieceee e 81

R ORI A\ F- 1Y = gl @ [0 - PR 82
5.4.2. SKT INUGU .ottt sttt te sttt sa st e besnentesee st eneeneeseens 82
5.4.3. Xiaomi SMart HOmEe Kit........ccoooiiiiee e 83
5.4.4. SEN.SE MOLNET ..ottt 83

5.5. Forensic Implications of the SECUNILIES........c.cccveiiii i 84
5.6. Privacy Implications of the SECUNItIES.........c.cccceeiiiie i 86
5.7. Cloud Data ACQUISITION TOOISc.civiiiiiiieiiicese e 88
5.8, SUIMIMAIY ...t b et n et e sr e e s e e n e e e nenr e e nrs 89
CHAPTER 6. CONCLUSIONooiiiiiicictseste ettt na e anas 90
B.1. FULUIE WOKKS ...ttt ettt et s te et et e e nnenteaneenns 93
REFERENGCESocoo ettt sttt et s et n ettt et nseneaneens 94
ENGLISH ABSTRACT ..ottt sttt sa et ne st sa et et e s e s enaaseans 98
T R B ekttt 100

List of Figures

Figure 1: Simplified 10T AFChItECTUIE. ..o 4
Figure 2: Android data storage model (by Altuwaijri and Ghouzali)c.cccccoveveiiiiiievcinenenn. 6
Figure 3: Service Oriented ArchiteCture APISccoiiiiiiii e 9
Figure 4: 10T Research network design and configurationccccceceviveiiniiiieni e 35
Figure 5: FOIOWEd reSEarCh PrOCESScccveiviiieeieiie ettt ste ettt s re s sbe et e e seesreereenre s 25
Figure 6: Example of an unzipped apK file ..o 29
Figure 7: SKT Nugu Al speaker operation MOGE..........cccveiiieiieie s se e e 36
Figure 8: Nugu Unzipped apk FIlE. ..ot 38
Figure 9: Nugu App information after decompiled using MObSFc.ccccoviiiviiiicincie, 39
Figure 10: Nugu App data creation Code SNIPPELSccvrererririerieieieisese s 40
Figure 11: Nugu app database dynamic analysis result from Inspeckage..........c.ccccoveveivinnnnn. 40
Figure 12: SKT Nugu shared preference manager code SNIPPeL.......cccccevveeviiiieiieeveseene e e 42
Figure 13: SKT Nugu shared preference dynamic analysis Inspeckage output..............ccccoeuenee. 42
Figure 14: com.SKENUGU.XMI FIIEeovviiiiic et 43
Figure 15:Permissions in the SKT Nugu Androidmanifest fileccoovviiviiiiiiiiicne 43
Figure 16: Communication security between SKT Nugu App and SKT Cloudccccccveuenee. 44
Figure 17: SKT Nugu app sslError handling method code SNippet.........ccccoevivieeveiecieiecieeens 44
Figure 18: Intercepted Nugu Android App INFOrmMationccceveieininienincseseseeeeees 45
Figure 19: Naver Clova Al speaker operation MOe............coovirieeieneieeene e 47
Figure 20: Naver Clova App information after decompiled using MoObSF.............cccooeiiiinnnne. 49
Figure 21: Naver Clova app database creation code SNIPPEL.........ccooeereiieeiinieiiereeiee e 50
Figure 22: Naver Clova app linenotice_pref.db file.........cooiriiiii e 52
Figure 23: Naver Clova app shared preference file editor code SNippetccocevvierervinnnne. 52

Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:
Figure 36:
Figure 37:
Figure 38:
Figure 39:
Figure 40:
Figure 41:
Figure 42:
Figure 43:
Figure 44:
Figure 45:
Figure 46:
Figure 47:

Figure 48:

Naver Clova app secured shared preference code SNippet.......ccccceevevevivvierenveneenee. 53
Naver Clova clova.xml file with partially encrypted keys and values...................... 54
Naver Clova app clovatoken.xml file with current token values...........c..cccocevveeenee. 54
Naver Clova APIs base URL in the extracted apk fileccoooviiiiiiiiicic 55
Naver Clova app permissions in the Android manifest file..........cccocvviiiiinenn. 55
Communication security between Naver Clova App and Naver Cloud 55
Naver Clova Bearer Token intercepted using MITM attackcccccoevveveveininenne. 56
Naver Clova Al speaker device and cloud encrypted network traffic....................... 57
Xiaomi Smart Home Kit 0peration MOGEccccviirireierieicisie e 59
Mi Home app dex to jar converted files ... 61
Mi Home app database creation Code SNIPPEL.........ocverererieiieierine e 62
Mi Home app dynamic analysis Inspeckage OULPULcccccvvevieiieevcie i 63
Mi Home app databases handler class files from MoObSF security.........c.ccccccevnee. 63
Mi Home app database files ..o 64
Mi Home app miio2.db file analysis result using SQLite DB browser 65
Mi Home app shared preference manager code SNippet........cccoovvvreneiereicnieenenns 66
Mi Home app external storage permissions in the Androidmanifest file 66
Communication security between Mi Home App and Xiaomi Cloud....................... 67
ADB logcat output for Xiaomi Mi HOME APP .ccvvveiiieeiececee e 68
Network traffic between Xiaomi Lumi gateway and Cloud...........cccccooovviiivinnne. 69
Sen.se Mother set up architecture with Sen.se Cloud............ccceoeviviiieviiiiic i 71
Pocket Mother app shared preference file code SNIpPetccccevveeeiivieciene e 74
Communication security between Pocket Mother app and Sen.se Mother Cloud..... 74
Pocket Mother app man-in-the-middle attackccoceviriiieiiiee e 75
Network traffic analysis between mother and Sen.se Cloudc.cccceeveveviievieeinnnne 75

Figure 49: SKT Nugu and Naver Clova Al Speakers Cloud Data Acquisition tools.................. 89

List of Tables

Table 1: Gartner 2017 10T prediction (Source Gartner 2017)........cccevereieiiiniineneneseseeeeeeeiens 2
Table 2: Summary of API authorization and authentication options............ccccccceviiviveiiieenenne. 11
Table 3: Selected smart NOME 10T TEVICES.......cviiiiiiirieiiieiricie s 34
Table 4: Used research materials and t00IScccooeiiiiiiiiiiicee e 33
Table 5: Summary of the companion apps data storage security implementation....................... 79
Table 6: Summary of communication security between loT companion Apps and Cloud......... 80
Table 7: Summary of communication security between 10T devices and the Cloud................... 81
Table 8: Summary of the Cloud API security Methods for the selected 10T devices................. 84

List of Listings

Listing 1: adb commands to access SMartPhRONEcccoveviiieiiiie i 28
Listing 2: adb command to list installed appliCationsccccoveiiieiciiiiir e 28
Listing 3: Example of listing Package NamEcceieiiiiiiiie e 28
Listing 4: adb pull command to download installed apps........ccccovvveiiiiiii s 28
Listing 5: dex to jar converting CoOMMANTccoiveiiiriiiniite et 29
Listing 6: dump command returns the current state of the tables in the database....................... 41
Listing 7: Live Analysis of linenotice_pref.db file using the sglite3 commandcccc...... 51
Listing 8: Live Analysis of miio.db file using the sglite3 commandccocoiveniiviiiiinens 65

Vi

CHAPTER 1. INTRODUCTION

1.1. Background

Technologies such as the Internet and wireless communication revolutionized the way humans
interact with each other and execute businesses around the world [1]. Now, on top of that, the
Internet of Things (loT) is adding another layer of advancement to basic interaction between
human and physical objects, an advancement that altered the interaction methods [2]. Objects that
required manual interactions to operate are becoming more automated. 10T is becoming one of
the mainstream technologies integrated into society. But, what does 10T mean and how is it
applicable in today’s society?

The term “Internet of Things” referred as loT, was first coined by Kevin Ashton in 1999 while
he was the Executive Director of Auto-ID Center; a research center focused on the application of
RFID technologies [3]. According to Ashton’s usage, the term refers to the ability of things to
generate information that, in turn, enables us to monitor and control them efficiently [4]. However,
there is no worldwide accepted single definition of IoT, in spite of Ashton’s claim to coining the
term. Different bodies define the term differently depending on their contexts. As a result, loT
could have different meanings from the academic and research, standardization organizations or
governments point of view. However, for this thesis, we will use an academic definition.

In the academic community, the Internet of Things (loT) refers to the interconnection of
intelligent devices with actuators and sensors through communication networks to automate and
minimize manual interactions of humans with physical objects [5]. Smart home automation,
healthcare services, manufacturing, power grids, transportation, and smart cities are the main
application areas of 10T devices in today society. According to Gartner’s 2017 prediction, by
2020, there will be 20.4 billion 10T devices connected to the Internet [6]. That means, 10T devices

will increase roughly by three folds from the number of connected devices in 2017, which was

around 8.4 billion. From that, the consumer side application area such as smart home 10T devices

deployment will take about 65% of the share [6].

Table 1: Gartner 2017 IoT deployment prediction (Source Gartner, 2017). The table shows that by 2020, the
number of connected loT devices will increase by almost 3 times than the number of connected 10T devices in 2016.

Category 2016 2017 2018 2020
Consumer 3,963.0 5,244.3 7,036.3 12,863.0
Business: Cross-industry 1,102.1 1,501.0 2,132.6 4,381.4
Business: Vertical-specific 1,316.6 1,635.4 2,027.7 3,171.0
Grand Total 6,381.8 8,380.6 11,196.6 20,415.4

Smart homes are homes with computing devices and appliances that offer context-aware
services and adjust the home environment based on the context and user preferred settings [7]. In
short, smart home refers to homes that use 10T devices to automate routine user activities,
including providing security services.

These smart home loT devices collect users’ information such as birthday, location, daily
activities and health records to perform their intended functionality. Moreover, data generated by
one loT device can be sent to another 10T device to trigger intended actions. For instance, sensors
attached to the main door of a house collect information when the door opens and closes. Then,
this data can be sent to other devices such as the light and room temperature controllers. Based
on the information generated from the single sensor attached to the door, the whole house
environment can be adjusted to suit the required context.

On the other hand, the same data can be used to infer the routine activities of the user, which
can be used in favor of or against the user depending on the situations. Therefore, the smart home
loT devices should be secure enough to protect themselves, and the privacy of the users from
cyber-attacks. However, as recent cyber-attacks research on loT devices and their ecosystem
indicate, these devices are not as secure enough as they could be. Moreover, apart from being a

direct target of cyber-attacks, smart home loT devices may be involved in crimes either as

enabling tools or witnesses to crimes committed in smart homes. As a result, there is a need to
forensically investigate smart home 10T devices found in crime scenes.

However, in smart home 0T devices forensic investigations, investigators face challenges due
to the nature of 10T devices, their applications and implemented securities. Some of the challenges
are identifying and collecting the devices, acquiring data from different data sources and pre-
filtering the forensic relevancy of the data [8], [9]. Moreover, since the smart home IoT devices
depend on the cloud to process and store collected data as stated above, the forensic process moves
to a cloud forensic from local device levels. As a result, 10T forensic investigators will face the
cloud forensic challenges described by [10], [11].

The security weakness in 1oT applications can contribute to the digital forensic investigation
process by allowing the acquisition of data from smart home loT data sources. This thesis aims
to identify how four smart home IoT application developers secure user data and how those
security techniques challenge the data acquisition process from the loT ecosystem for digital
forensics investigation purposes. For this thesis, we investigated two Al speakers (SKT Nugu,
Naver Clova) and two smart home kits (Xiaomi and Sen.se Mother).

In the next sections, we will present the 10T ecosystem security requirement, thesis statement,

and research questions.
1.2. 10T Ecosystem and Security

As stated in the introduction section, we define the Internet of Things (loT) as the
interconnection of intelligent devices with actuators and sensors through communication
networks to automate and minimize manual interactions with physical objects [5]. Smart home
automation, healthcare services, manufacturing, power grids, transportations, and smart cities are

the main application areas of current loT devices.

Regardless of the difference in application areas, most 10T devices connect to the Internet
connection and exchange data through backend cloud. Most 10T device architectures are
composed of: (1) backend cloud to process and store data, (2) sensors and actuators to sense and
trigger certain actions, (3) hubs to facilitate interaction among sensors and cloud, and (4)
companion/client applications (visualization and monitoring applications) to facilitate user
interactions to the devices and data. Figure 1 shows a simplified IoT architecture with the main

components.

Backend
Cloud

Services ‘
Web Service

APls

loT Device

Comm.
Protocols

Companion

Sensors
and
Actuators

Aggregator/
Hub

Applications

Comm.
Protocols

Figure 1: Simplified loT Architecture. The backend cloud serves as a bridge between the loT devices and the
Companion Applications using Web service APIs to provide the required interface for data exchange and
management services.

1.3. 10T Security Framework

There are multiple initiatives from specific governments (UK, ENISA, NIST, and Japan),
industry alliances (Embedded Microprocessor Benchmark Consortium (EEMBC), International
Electrotechnical Commission (IEC), loT Security Foundation (IoTSF)) and Open communities
(such as OWASP) to develop loT security standards and guidance. For this research, due to the
comprehensiveness of the guidance for 10T application developers from all 10T ecosystem aspects,
we will use the OWASP’s ToT Security Guidance. The guidance provides the basic level of
security requirements to be considered during ToT application development. “OWASP is an open
community dedicated to enabling organizations to conceive, develop, acquire, operate, and

maintain applications that can be trusted [12]. In this thesis, the usage will be limited to the scopes.

In this document, wherever claims that state the “recommended security” is used we explicitly
refer to this standard.

Since the goal of this thesis is to identify security methods implemented to protect user data
from the client side, we will discuss general data storage and access protection mechanisms.
1.3.1. Companion Apps

In 10T architecture, data visualization and monitoring apps are called companion apps. They
are the interfaces between the loT ecosystem and the user. They serve as a setting interface,
managing loT devices and generated data. In some 10T devices, they are also used to issue
commands. They store user information such as account information required for registering the
device and depending on the developers; some companion apps also cache user data. Mostly the
cache data is a copy of the user data saved in the cloud.

Companion Apps can be developed in different flavors such as Android, iOS and Windows.
Moreover, some developers may provide a web-based user interface to achieve the same
functionality as the companion apps do. For this research, as specified in the scope, the Android
type of Companion Apps of the selected devices will be investigated.

In the Android OS data storage model shown in figure 2, applications save data in their own
space in the data section of the built-in flash memory. Based on this model, the OS provides a
data isolation mechanism for each app. That means access to specific app data by another app is
not allowed unless explicitly allowed access to the data. To achieve this control, there are two
kinds of access control models in Android OS. Older Android versions (below version 4.4), use
the Discretionary Access Control (DAC) model. In this model, the owner decides what
information should be shared to other apps during run time. However, since this model is
dependent on the user’s willingness, less security savvy users grant too many privileges to apps,
which makes them vulnerable to attacks. Moreover, in DAC, granted permission can be

transferred to other apps. To overcome these issues, the Android OS version above 4.4 uses the

Mandatory Access Control (MAC). In the MAC model, the system decides access to the app's
data based on the privilege level they have [13]. This privilege is determined during the
installation of the app by using the grant types specified in the App Manifest file. App Manifest
file (commonly known as AndroidManifest) file is an Extensible Markup Language (XML)
format file associated with each Android Apps, which describes the information of the App

including the required and allowed permissions [14].

System «—— !
— Protected by DAC and MAC
Built-in Flash App Specific «—— /data
memory i
/ /SDcard(0)
&«
Public -~ Protected by permission
External — /SDcard(1)
SD card

Figure 2: Android data storage model by Altuwaijri and Ghouzali in [13]

In general, Android provides four different options for developers to save data based on the
particular app’s requirements, such as data size, type of data, and access level (private or public
mode). Databases, SharedPreference, internal and external memory are options available for
developers to save data [15].

In Android OS, databases are used to save structured data. SQLite is a database that is used to
save data in Android Apps. These databases are created in private access level by default (i.e.
other apps do not have access to another app's database). The private access mode is an access
control mechanism used by the Android OS to limit apps from accessing another app’s data
without the explicit grant. If the apps want to share the data stored in the database, they have to

use access granting mechanisms and implement access interfaces provided by Android OS.

SQLite databases are used to save user information such as usernames, email IDs, passwords,
logs, etc.

The other data storage option is a shared preference. They are used for data types that do not
need a structured format. In shared preference, the data is stored in XML format with a key and
value pair structure.

On the other hand, for temporary data, internal and external storage options are recommended.
In the case of the internal storage, data is saved in the inbuilt flash memory and is accessible only
by the app itself [16]. However, the system may clear these data during memory recovery
operations, even if the developer did not implement clearance methods. In the case of the external
storage options, the files are saved in extended storage, which is managed by the user of the device.
Also, files saved on external storage are accessible by other apps without any access grant
mechanisms [15].
1.3.1.1. Companion Apps Data Storage Security

As stated above, companion apps are interfaces to 10T devices and user data management. User
information used for registering the device and cached cloud data is stored on these companion
apps. As a result, this information should be protected from malicious operations. Using the
default private access mode protects access to data. However, the protection breaks in case of
rooted phones or malware that run at the root level. Therefore, implementing data encryption
technologies on the top of the PRIVATE MODE is recommended to protect this data [16].

Similarly, Android provides full disk encryption options for versions above Android version
4.4 [17]. However, according to the Open Web Access Security Project (OWASP) report, insecure
data storage is one of the top 10 leading security issues in leaking sensitive information from
smartphones [18]. Therefore, in addition to Android full disk encryption and private mode access
control, 1oT companion app developers should implement an additional layer of encryption to

protect user information stored on Android storage [16].

Currently, Instant Messaging Apps such as Telegram [19], WhatsApp [20], Kakao [21] are
using data encryption techniques, though the strength of the implemented security is another
dimension to consider. As these kinds of data protection implemented to IoT companion apps,
data acquisition and analysis will become more challenging for digital forensics investigators.
However, many loT companion app developers are not implementing necessary security
mechanisms to protect user data. As already mentioned, these security weaknesses are safe
gateways for digital forensics investigators to acquire and analyze user data from the Apps.

On the other hand, as stated above, the companion apps can store cache data downloaded from
the cloud, which is limited both in size and duration. Therefore, to get the complete version of the
data, there should be some access method to the original data saved in the cloud. This is where
security implemented on cloud interfaces play a challenging role in the digital forensic
investigation data acquisition process. In the next section, we will discuss what these interface
methods are, and the recommended security methods. Lastly, we will state how vulnerabilities in
those security techniques can be exploited for digital forensic investigation purpose.

1.3.2. 10T Backend Cloud

From an loT devices data storage and processing perspective, the backend cloud plays a
significant role. It communicates to the loT devices and client apps to store and process data and
perform device management. The interfaces between the client apps and the cloud are called
Application Programming Interfaces (API). They are used to transport data and commands
between the clients (companion apps) and the backend cloud service and infrastructure.

APIs are a new technology trend used to combine web applications easily. They are interfaces
designed in a way that facilitates the transport of structured data between communicating client
applications and web servers without revealing much of the underlying working principles. Figure

3 shows a service-oriented architecture API model. The web site [22] says:

“APls/information hiding allows for the creation of a minimal interface that is
relatively stable that can be used by other software systems to access or manipulate the
underlying systems or data. This allows for enhancements to the underlying systems or

data without disturbing the software systems that use the API” [22].

Often web-based services’” APIs are designed either in a Service Oriented Architecture Protocol
(SOAP) and Representational State Transfer (REST) format. REST is an architectural style to
represent the state of the resource at a specific time in a hypertext format [23]. REST APIs are
preferred for stateless and limited resource web service implementations [24]. Standard HTTP
methods - GET, POST, PUT and DELETE are used for REST APIs. JavaScript Notation (JSON),

XML, HTML and plaintext are the resource representation formats used for REST APIs.

External Systems/Services

\

{ Interface to Services
(" Changes Infrequently

Web Services
Web Services
Web Services

~ S By
/

‘:/ Service \| . |I Service \] API
J N\ 4 /

Implementation of

/ / \ / Services Changes

/ / A / > More Frequently than
the Interface to the
Services

4 4 | 4 _
Underlying Systems/Data

Figure 3: Service Oriented Architecture APIs (From service-architecture.com). APIs are used to interface the
underlying systems/data stored in web servers to the client-side applications in the external systems.

For 10T backend services, XML and JSON are common data representation formats used for
REST APIs. These APIs can be designed to be public, which is officially available for anyone or
private APIs which are used only by the service provider client applications.

However, as they are the gateways to the cloud data or systems that are running behind the front
end, they also pose security risks to both the data and systems they interface. As a result, proper

security mechanisms should be considered during designing and implementing these APIs.

1.3.2.1. Backend Cloud Data Interfaces/APIs Security Methods

As stated above, one of the main benefits of developing RESTful APIs is their availability for
client-side implementation without any specific language requirements [25]. Since these APIs are
interfaces to data and other resources, the security aspect should be adequately addressed. Attacks
such as credential stuffing — an automated trials of compromised credentials to gain access to
systems [26], fuzzing - forcing systems to replay important information using random data [27],
and data exfiltration through replay attacks using stolen cookies and stolen tokens happen due to
lack of proper APIs security implementation [28].

The underlying security requirement for REST APIs is an access control mechanism. That is,
every REST API request should be validated by the server using credentials. To better secure the
APIs, these credentials should not depend on cookies or sessions for authorization and
authentication. That means, they should be stateless [29]. Therefore, while developing APls, the

following issues should be addressed to validate the requests [25].

1. Identity: identifying who is trying to access the protected resource and what methods are

used to verify the identity of the user.

2. Authentication: verifying if the identified user has proper credentials to access the

protected resources.

3. Authorization: determining which resources and what actions are allowed for the user to
perform on the protected resources.
In order to achieve these security requirements, applications can use different techniques to
identify and authenticate users. Table 2 summarizes the available options.
The selection of which technique to use depends on the required security level, the type of
access, the type of requesting client and the available infrastructure. However, in recent

implementations, due to the security and the capability to use third-party resources for account

10

management, OAuth protocol has proven its use in current web services authorization and
authentication method. Its version 2, OAuth 2.0, is the dominant technology recommended for
many REST API authorization and authentication techniques. In the following statements, [30],

stresses the advantages of using OAuth 2.0 for current API based applications.

“Use the latest and greatest OAuth - OAuth 2.0 (as of this writing). It means that Web or
mobile apps that expose APls don’t have to share passwords. It allows the API provider to
revoke tokens for an individual user, for an entire app, without requiring the user to change
their original password. This is critical if a mobile device is compromised or if a rogue app is
discovered. Above all, OAuth 2.0 will mean improved security and better end-user and
consumer experiences with Web and mobile apps”.

Table 2: Summary of API authorization and authentication options

ID Method Description

Username and = Using the basic or digest authentication methods, a pair of username and password
1 L .

Password can be used to identify and authenticate users.

After the first authentication is done using username and password, subsequent

2 Sessions sessions can be authenticated using cookies from the first session.

Digital certificates generated by mutually (client and server) trusted authority can

3 Certificates be used to identify and authenticate users.

Open The OAuth protocol can be used to authenticate users using another application
4 - - A
Authorization (can be third-party) authorization servers.
5 Custom Proprietary protocols can be used to identify users and authenticate them to access
authentication the resources.
6 AP keys Tokens (a random and unique set of characters) generated by the server can be

used to authorize and authenticate users during the first session.

From the above description, we understand that the access control mechanisms are critical
security methods to consider the resources behind APIs. However, the stated security techniques
address one aspect of the security, which is protecting data at rest. However, the security aspect
should also consider data confidentiality and integrity during transportation [31]. In general, APIs
should be developed with additional security considerations such as using SSL/TLS, password
hashing mechanisms, not sending tokens, username, and password as a parameter in the APIs,

and validating the input parameters and the number of requests at the server side.

11

As shown above, communication security is one of the security dimensions to consider during
API design to ensure the confidentiality and integrity of the data exchanged between the client
applications and the cloud. In the next section, we will present what kind of communication
security methods are required to protect data exchange between 10T endpoints; cloud to client
apps and cloud to loT devices.

However, in spite of the above recommendations, developers are negligent in considering the
holistic view of the security during the design and development lifecycle of loT devices and their
ecosystems. This negligence that creates security weaknesses in protecting the data and systems
the APIs interface is one benefit, however, is to the digital forensics investigators who need to
acquire user data from loT backend Clouds.

1.3.3. 1oT Communication and Security

In 10T devices and their ecosystem, data communication includes communication between the
companion Apps and the cloud, between the device and the cloud, between the device and the
sensors, and between the device and the companion smartphone apps. Except for the security
between the companion Apps and the cloud, which is commonly SSL/TLS, all the other
communication channel security methods depend on the implemented communication method
and protocols. For instance, if the communication method between the sensor and the device is
Zighee [32], Zigbee related securities are recommended. Also, for the device to cloud
communication security, the implemented protocols affect the security methods chosen to protect
the communication. However, the baseline requirement in all cases is, developers should consider
implementing the safest security protocols available for each communication method selected
starting from the design stage.

1.3.4. 10T Hubs and Sensors Security
These are embedded smart objects which include the hub, the sensors and the actuators that

interact with the users and the physical objects they automate [33]. These devices are the primary

12

data sources - that collect, aggregate and transmit the data either to the cloud or in some cases,
directly to companion apps. As a result, depending on the capability of the device, they store and
preprocess user data which should be protected. However, since they are out of the scope of this

thesis, detail description is not provided in this document.

1.4. Thesis Statement

In this section, we presented the thesis statement, the general and specific research questions,
and the scope of the research. In this thesis statement, we claim that:

Smart home loT application developers do not comprehensively design and implement
securities in the 10T ecosystem. This means that some devices may implement strong security in
one component of the ecosystem (e.g. client Android app security) and weak security in another
part (e.g. access to the backend cloud used to store and process data generated from the
devices). As a result, these security weaknesses can help digital forensic investigators to acquire

digital evidence from smart home loT ecosystems.

In the following section, we give research questions to frame the approach of the study.
1.5. Research Questions

The thesis aims to identify the current state of the selected smart home loT application security
implementations from digital forensic investigations point of view. In order to address this, we

will discuss the following questions.
RQ1.1: How are the selected smart home loT developers implementing user data protection?

RQ1.1: What are the various data (at rest, in process and transit) protection techniques

implemented in loT Companion Apps of the selected 10T devices?

RQ1.2: How do these securities affect digital forensic investigation?

13

RQ2: How are selected smart home 10T developers handling communication security in the

selected smart home loT devices?

RQ2.1: What security is used in selected smart home 10T devices to protect user data

exchange between cloud and client App; and between device and cloud?

RQ2.2: What are the various security techniques used in selected smart home loT devices

cloud APIs?
RQ2.3: How do these securities affect digital forensic investigation?

RQ4: How can we access smart home 10T cloud data using APIs with the identified security
techniques? The purpose of this question is to demonstrate the cloud acquisition process

using the security weaknesses in two of the selected devices.

RQ5: What are the privacy implications of the security weaknesses and what could be done to

protect the privacy of the IoT users?

1.6. Contribution

The purpose of this thesis is three folds. The first is providing a picture of the current state of
the security techniques implemented to protect access to user data on the selected smart home loT
devices. The second is to provide insight into the design trend of these security techniques and
implications to digital forensic investigation. The third is to demonstrate how these security
weaknesses can be used to acquire user data from the 10T ecosystem; we will develop a simple

cloud data acquisition tools for two of the selected devices.
1.7. Thesis Scope

Security analysis on smart home 10T devices and their ecosystems cover a wide range of
features. For instance, even associated client Android Apps security analysis can be broad, which

cannot be covered by this thesis alone. However, since the focus of this thesis project is analyzing

the implemented loT security from a data acquisition perspective for digital forensic

14

investigations purposes, the scope of the security investigation on the selected loTs and their
ecosystem is treated accordingly. The scope of the research covers Android app forensics and
security analysis, network communication analysis and analysis of cloud API security technigues
for the selected study devices. Finally, a cloud data acquisition tool for two devices will be

provided to demonstrate our investigation results.

1.8. Thesis Structure

The thesis is organized in 6 chapters. The first chapter, which is this chapter, covers the
introduction to 10T devices and the requirement to conduct digital forensics investigations on loT
devices and their ecosystem. The background research on the security requirements of user data
protection for client-side access methods is also included in this chapter. Finally, research
statement, research questions, and scope of the research are also included. The second chapter
presents a literature review of previous works and driving points towards the research. The third
chapter presents the research methodologies and followed procedures to conduct the
investigation. Chapter four presents the survey study results and the analysis of the results.
Chapter five presents a discussion of the results and implications of the results to loT forensic
investigation and privacy of the users. A brief overview of privacy protection methods are also
included in this chapter. The cloud data acquisition tools for the selected devices are also included
in this section. The sixth chapter presents the conclusion and possible extension areas of the

research. Finally, references and abstracts both in English and Korean language are also included.

15

CHAPTER 2. BACKGROUND RESEARCH

Before developing the research, design and executing the investigations, we conducted a
literature review on the specific areas to assess the overall threats, already happened data breaches,
and existing studies to determine the research directions. In this chapter, we presented the selected

literature reviews on general 10T ecosystem securities and 10T forensic investigations.

2.1. Smart home IoT Devices Security and Privacy Issues

2.1.1. General 10T Security Issues

Smart home 10T devices are devices connected to a different network to facilitate the daily
operation of users by collecting and communicating the data with the users through the Internet.
Most of the information collected by I0T devices is related to personal information, such as date
of birth, location, budgets, daily activities, and health records. As a result, the need to secure them
is not a matter of choice but rather a critical step that needs to be addressed throughout the life
cycle of the devices [34], [35]. However, as recent attack vectors and researches indicate the
security solutions implemented in 10T lack comprehensiveness to protect the security of the
devices and the privacy of users.

Sicari et al. in [36] presented a survey on the undergoing researches and existing solutions for
loT security and privacy protection techniques and providing research directions to be addressed
to ensure the security of 10T devices. From authentication, authorization, access control, privacy,
trust, secure middleware, policy enforcement, and mobility security point of view, they identified
that there is a lack of unified insight to guarantee the privacy of users, security requirement of loT
devices and their diversified underlying systems.

Airehrour et al. in [37] claimed that existing 10T routing protocols such as 6LowPAN and RPL

have limitations of security. Lack of standardization in secure routing between loT impacted the

16

level of security in the protocols. They also stressed the need to balance the network and power
consumption of the nodes while addressing the security in 10T routing protocols.

Yang et al. in [38] stated that the safety of 10T devices is affected by individual manufacturers
involved in implementation, the protocols and the security techniques in the devices. Based on
their survey on security and privacy of 10T devices, they pointed out that, all 10T devices could
be affected by certain types of attacks depending on the particularity of the case.

Ling et al. in [39] presented analysis on the end to end security of 10T devices from the device,
the cloud and the controller (monitoring device) point of view based on ten functionalities that
need to be secured properly. Then they demonstrated using a case study on Edimax IP camera, in
which they discovered vulnerabilities and exploited them to gain access to the camera. The
identified vulnerabilities enabled them to control IP cameras. For instance, the spoofing attack
enabled them to obtain the user’s password for the device. The other attack scenario included the
physical access of the device, in which using the reset button on the camera, the attacker could
control the camera after changing the password. Finally, they stressed the need to address 10T
securities broadly, to avoid massive attacks such as Mirai Botnet.

Ammar et al. in [40] presented a survey on the security of 8 commercially available 10T
frameworks. AWS loT from Amazon, ARM Bed from ARM and other partners, Azure 10T Suite
from Microsoft, Brillo/Weave from Google, Calvin from Ericsson, HomeKit from Apple, Kura
from Eclipse, and SmartThings from Samsung are the surveyed frameworks. Although the
companies followed the same design approaches towards data aggregation methods and
communication security; the implemented securities and the underlying technological solutions
are quite different. However, regardless of the securities implemented in each of the frameworks,
the authors showed that some of the frameworks have security issues that may arise from the

design and implementation of the solutions. For instance, some of the embedded devices depend

17

on the commercial of the shelf chips which do not address hardware security, while some
embedded the keys to devices before deployment.

Siboni et al. in [41] proposed an IoT security testbed system, a system with a collection of open
source vulnerability assessment and penetration tools in an integrated format. The integration is
based on task flow in which one tool’s output is fed to another tool as input to perform further
analysis. One of the interesting modules of the system is the context-based simulation module
used to automate the data generation for the test. For instance, there is a robot module that can
produce motion for motion sensors testing. The system also has an advanced testing module which
is based on the application of Machine Learning techniques. Finally, the reporting module
produces the results in a document format to be exported. Based on the practical implementation
of the system, they presented an analysis of selected 10T devices. Their analysis shows that all of
the analyzed loT devices are vulnerable to at least one already known vulnerability. The system
is very interesting to start as a development and analysis but considers 10T devices from only
devices level, not the ecosystem in general. For instance, the system does not consider the weak
points in the client Apps or the cloud running as a backbone for the loT that will endanger the
security of the 10T and privacy of the user. Moreover, the system does not address the end sensors
except the communication network between the sensors and their hub.

However, all of the above works focus on the attacker’s perspective, which does not consider
the data acquisition process for digital forensic investigation purposes. For instance, none of the
above works demonstrates how the one-time authentication and authorization of cloud APIs affect
the data acquisition process for digital forensic investigations. Moreover, the above studies did
not address how loT devices’ monitoring Apps handle user data on smartphones.

2.1.2. 1oT Companion Apps Data Security
Liu etal.in [42] presented a survey on 17 popular Android Apps data storage security techniques

to determine how developers follow security recommendations to protect the user’s private data.

18

Their result shows that most developers do not implement the required security. Even those who
apply tend to implement it in the wrong way. Moreover, in some case, they do not properly
categorize sensitive information due to lack of developers’ awareness of privacy and security
issues. Their research is mainly focused on data stored in shared storage. However, as recent
attacks trends show, even data saved in the apps, private storage is not immune to attacks.

Jain et al. in [43] presented two SQL.ite database vulnerabilities in Android Apps by manually
analyzing the apps on a rooted Android phone using OWASP threat modelling. The reason they
chose the manual analysis is due to the difficulty of the analysis because of the difference in the
structure of the app's database. They analyzed different messaging apps and presented the result
based on their threat modelling. The two vulnerabilities they focused on are on storing sensitive
data in plaintext and on the synchronization procedure of the apps. The authors performed risk
analysis based on the two vulnerabilities on the different application as a demonstration using the
OWASP threat modelling approach. Specifically, they analyzed the naver-line chat service app
and demonstrated a spoofing attack by changing the attributes of the database. Finally, they
stressed the need to encrypt sensitive data on SQL.ite databases and perform regular synch of the
data to avoid the tampering of data which may, for instance, result in an identity spoofing attack.
2.1.3. 10T Backend Cloud APIs Security

Rodriguez et al. in [44] presented analysis on a set of data from Mobile Internet traffic traces
from a telecom company to determine how developers follow REST theoretical principles and
guidelines to design APIs used for mobiles. They developed a set of approaches and measurement
criteria that enable to measure APl maturity levels. They found out that the practical
implementation and usage of most web service REST APIs are not consolidated and standardized
based on the recommended theoretical REST architecture styles. But their analysis is limited to

the architectural style of REST APIs and did not consider the implemented security of the APIs.

19

Petrillo et al. in [45] presented a case study on three cloud service providers to determine how
much of the recommended best practices they followed during designing REST APIs. Google
Cloud Platform, OpenStack and OCCI were the subjects of the study. For their research, they
catalogued 73 best practices to be considered during API designs. According to their analysis
results, from the 73 best practices, GoogleCloud followed 66% (48/73), OpenStack followed 62%
(45/73), while OCCI 1.2 followed 56% (41/73). However, their focus was on the
understandability and usability of the APIls, where the security part is given less attention and
skipped from the analysis.

Chung et al. in [46] presented API analysis on Amazon Alexa and showed that forensically-
relevant data could be obtained from Echo speaker and its ecosystems (the cloud and companion
client applications). For Echo investigation, most of the data can be acquired from the cloud using
the unofficial APIs and cookies discovered through the communication analysis between the user
web interface and the Amazon cloud. However, they took advantage of the user web interface
available to the users, which may not be the case to all smart home loT devices. Moreover, their
focus is on the extraction of data from the cloud using the APIs, not the security of the APIs.

Kanmani in [31] presented a survey on the limitation and benefits of different techniques used
by REST with the OAuth authorization protocol. The author was focused on how the OAuth
protocol is used to authenticate REST based services exploiting the provided advantages such as
service addressable, interface consistency and resource caching of the REST protocol. The survey
of the paper is limited to providing analysis of the technology.

In contrast, in this thesis, we focus on the analysis of the user data protection techniques in the
companion apps, communication securities, and APIs security, specifically those used between
loT and backend cloud service providers. More specifically, the analysis focuses on the

implemented storage securities, channel security methods, authorization and authentication

20

methods used for selected IoT devices smartphone companion Apps’ APIs. Moreover, the

communication security between the 10T device and the backend cloud.
2.2. Forensic Investigation of 10T Ecosystem

As stated in the introduction section, 10T devices collect user data that can be useful for digital
investigation purposes in investigating crimes that occurred in smart homes. Some 10T devices
had already proved their usefulness in [47], [48].

Rahman et al. in [49] created smart home scenarios and analyzed the forensic relevance of the
data collected by Sen.se Mother and its Cookies (motion sensors). In their scenario, they showed
that data collected from different Cookies could be applied to different investigation cases.
However, their research was limited to the analysis of the data by accessing the cloud data through
the user web interface provided. The only security they have to consider was getting the username
and password from the user. Therefore, their work did not address the extraction of the APIs, and
how the user data can be obtained in case of the username and password are not available.

Chung et al. in [46] showed that forensically-relevant data could be obtained from Amazon
Echo speaker and its ecosystems (the cloud and companion client applications). For the Echo
investigation, most of the data can be acquired from the cloud using the unofficial APIs and
cookies discovered through the communication analysis between the user web interface and the
Amazon cloud. On their work, they also included a tool for loT forensic approach (cloud-based
loT Forensic Toolkit) to indicate the process of acquiring forensic relevant data from Alexa and
its ecosystem based on the extracted APIs and cookies. Also, they included artefacts from the
companion App installed on smartphones. However, their research took advantage of the user
web interface available to the users, which may not be the case to all smart home 10T devices.

Regarding the forensic investigation of gateway devices such as routers deployed for loT

devices and home networks, authors in [50] presented work on live forensics analysis using APIs

21

to investigate network attacks on MikroTik RB750 RouterOS. But, their forensic examination of
the router was limited to a specific device.

Kebande and Ray in [51] proposed a generic Digital Forensic Investigation Framework (DFIF-
IoT) for 10T devices based on three processes, Proactive, 10T forensics and Reactive process.
Each process has its own mini processes. The proactive processes address the digital forensics
readiness process to make the environment forensically prepared. The 10T forensics process
addresses the actual forensic activities using already accepted methods across three domains,
cloud forensics, network forensics and device level forensics. The third process, the reactive
process addresses the required processes to investigate 10T devices after an incident, is identified.

Akatyev and James in [52] proposed a model on how to approach smart home IoT devices
digital forensics investigation based on threat assessments on intelligent smart home loT
deployments. After conducting a threat assessment on the assumed smart home environment, they
pointed out investigation focus areas (devices) based on the type of the threat.

Kebande et al. in [53] proposed a Digital Forensic Readiness Framework (DFR-IoT) for loT
devices to facilitate the digital forensic investigation process in loT devices ecosystem if an
incident is detected. The framework proposes three processes, the Proactive Process which
addresses the required activities before incident detection; the loT Communication Mechanism
addresses the activities for loT automated communication and the Reactive Process which focuses

on activities after an incident has been detected.
2.3. 10T Forensic Challenges

Authors in [10], [11], [54], [55] pointed out challenges to general digital forensic investigations
due to both technical and legal aspects of the area. From technical challenges, encryption, cloud

computing and data hiding techniques lead the challenges. James and Jang also stressed the

challenges faced in conducting cloud digital forensic investigations due to the difference between

22

jurisdictions of hosting and investigating authorities. They also addressed the technical challenges
due to the deployment architecture of the cloud itself. Unfortunately, as 10T forensics relies on
those technologies, most if not all of the challenges stated will apply to IoT forensic investigation.

Oriwoh and Sant in [56] proposed a comprehensive 1-2-3 zone and Next-Best Triage (NBT)
loT forensics model due to the unique nature of the 10T devices investigation. The dispersity and
location of the devices and evidence, number and interconnection complexity of the devices, the
amount of data, lack of clear cut between network borders, and the cloud dependency of the lIoT
for data storage are some of the challenges. In their model, they proposed a divided approach
based on the network setup of the devices. However, their model is focused on the high-level
challenges leaving the security challenges faced in each zone.

Rughani in [9] divided IoT architecture into 3 (cloud, network, and endpoint) and focused on
the challenges faced during the data acquisition process from the endpoints. The visibility of the
IoT devices, mapping the complete network due to the distributed nature of sensors, keeping the
integrity of the evidence from sensors, deciding the relevance of the data to image a specific
device and the mobility of the devices are the challenges stated by the author. Though this focused

on the endpoints, the author did not consider the security on the devices.
2.4. Summary

In this chapter, we presented the literature reviews on the specific areas to assess the overall
threats, already happened data breaches, existing researches, and to determine the research
directions. From the study, we understood that IoT developers are not considering the
cybersecurity issues in a holistic view and lack addressing it comprehensively from the design

and development stage, which reduces the challenges to loT forensic investigators.

23

CHAPTER 3. RESEARCH METHODOLOGY

A research methodology is a framework that guides how the research is going to be carried out,
the methods and procedures to be followed, and the subject of the investigations. This thesis is a
technical analysis based on research works that are lean to the qualitative research method. In
qualitative research, analysis is done based on assumptions and reasoning on the gathered data
combined of texts, images, audios, and other information. For the research to address the specified
statement and answer the questions listed in the research questions section, we collected data by
performing a technical investigation on the case study subjects. Case study research methodology
is a scientific research method developed to suit scientific researches that require designing
experiments and investigating selected subjects to formulate a theory for the broader set [57].

In the following subsections, we presented the research procedures, the selected study devices,

the network setup, and assumptions for the research.

3.1. Followed Research Process

Since the thesis is based on the technical investigation of the devices, the first activity we did
was conducting a literature review of the subject area. After the literature review for the general
contexts and the specific case study devices, we dive into the technical investigations of each case
study device. As shown in figure 5, we approached the research from 4 dimensions. Each of the
four dimensions is described in detail with respective procedures. Since the study includes a
demonstration of the findings on the case study devices, the investigation results led to two
activities. The first one is developing a simple cloud data acquisition tool for the selected IoT

devices. The second and final stage of the process is writing the thesis.

24

Investigation Dimensions

Android Smartphone | | 4 Ap| Security

Forensics Demo
Literature Cloud Data
review Acquisition
Tools
loT Android Client Network
App Security Communication

l

Writing Thesis paper

Figure 4: Followed research process. A first literature review was done before investigating the 10T devices. Both
activities are used to develop the thesis. Finally, the sample demo tool is developed.

3.2. Followed Research Procedures

In this subsection, we presented an overview of the investigation dimensions we followed along
with the high-level procedures followed and tools used to conduct the research.
3.2.1. 10T Android Companion (Client) Apps Investigation

Most of IoT devices come with companion mobile applications, which are used to set up and
manage the device. Moreover, these apps are also used to access data stored and processed in the
cloud or in the devices. Since APIs are the transporters of these data from the cloud to the app
cache, analyzing the apps directory in the smartphones reveals information such as the cookies,
authentication tokens and in some cases used APIs. Most of the time this information is saved
either in the XML format in the shared preference directory or in the SQL.ite database format in
the database directory of the apps.

In some cases, analyzing the cache files may also reveal the requested APls. However, if data

protection techniques are implemented to protect user data, access to this digital evidence is

25

hindered by securities. In this research, we conducted an extensive analysis of the data protection
techniques implemented in the apps to protect user data while it is at rest and in transit.

We approached the analysis from three different sectors. The first part addresses the security
techniques implemented in the app to protect user data saved on the smartphone storage. To
achieve this analysis, we conducted a combination of app security and app forensics analysis. We
performed static and dynamic analysis on the app using the Android reverse engineering approach
to identify the security methods implemented. For the forensics analysis, we conducted live
forensics on the app installed on Samsung Galaxy Note Il with Android version 4.4 (KitKat). The
smartphone is rooted for the purpose of this research. Moreover, we analyzed the app from
network investigation perspectives using traffic analysis through Wireshark and Man-in-the-
Middle attack approaches.

3.2.2. Companion Apps Security Analysis using Reverse Engineering

Reverse engineering and hooking are the two widely used techniques to analyze applications;
understand the way they work and asses security of application through app analysis using static
(code analysis) and dynamic analysis methods. The static analysis, decompiling and analyzing
the apk file reveals what kind of shared preference files, databases, tables, and what kind of
security mechanisms the app uses and how the app constructs the APIs. To analyze the source
code, we used a combination of adb, apktools, MobSF and java decompilers. Moreover, the
dynamic analysis helped us to understand the behaviour of the apps during operations. Analyzing
the real-time activity of the app using dynamic analysis tools, we were able to identify the created
files, called security methods, database operations, and cloud request operations. We used tools
such as Inspeckage with the Xposed framework to perform the dynamic analysis.

The general procedures we followed to reverse engineer and analyze Android applications for

the research are:

A. Static Analysis

26

1. Download the app from the smartphone using adb operations or download the app from
the Google Play service. For our research, we downloaded the installed apps from the
smartphone. This enabled us to control the version of the app we analyzed and run on
the smartphone.

2. Decompile the app to java source codes
3. Study and analyze the source code
B. Dynamic analysis
1. Install the app on the smartphone
2. Root the smartphone using Android rooting tools such as Superuser.apk

3. Install dynamic analysis (hooking) tools Xposed framework and Inspeckage modules on

the smartphone
4. Using the app within the dynamic analysis tools to generate data and analyze the app

Instead of performing, each analysis in a distinctively independent fashion, we combined the
static and dynamic analysis together to investigate the companion apps. That means, for instance
after performing static analysis for the database security, we immediately followed the dynamic
analysis for the database.

For the combined investigation, we used the following procedures and commands as stated
below with a brief description of each step.

Step 1: Connect the rooted smartphone with the installed Companion app to the research
computer using a cable with USB type.

Step 2: Find the app name and path using adb operations using terminal - to get the path and
name of the packages we followed two approaches. The first is browsing /data/app directory using
the Linux “cd” (change directory) and “Is” (listing) commands and manually looking for the app’s
name. The second one is using a short and efficient way to list installed packages (shell pm list

packages -f -3). To achieve the first option rooting of the device is required.

Option 1:

27

#adb devices
#adb shell

#su

#cd /data/app/
#ls

Listing 1: adb commands to access smartphone

Option 2 - simply use

#adb shell pm list packages -f -3

Listing 2: adb command to list installed applications

Output Example:

package:/data/app/com.naver.clova.apk=com.naver.clova

Listing 3: Example of listing package name
Step 3: Download the app using the adb pull command

The generic command to pull apks from a smartphone i:

#adb pull /data/app/package name destination path

Listing 4: adb pull command to download installed apps

For example: rootPath|Analysis\Clova>adb pull /data/app/com.naver.clova.apk . In the above
command, the “.” indicates the current directory as a destination path. The Output is:
/data/app/com.naver.clova.apk: 1 file pulled. 4.4 MB/s (23656683 bytes in 5.119s).

Step 4: decompile the apk file into java source code files. Since apk files are compressed Java
class files, unzipping the apk file will dump the apk into “dex” files (java source codes compiled
to android binary format) and other resource files compressed together. A detailed description of

apk file creation and structure are out of the scope of this research.

For static analysis, we used two methods with different tools. The first method was manual
analysis using a combination of tools such as WIinRAR, dex to java converter [58] and java
decompiler [59], [60]. The steps and commands are stated as follows.

Step 4.1: Rename the file by changing the apk extension to zip extension.

Com.naver.clova.apk into com.naver.clova.zip

Step 4.2: Unzip the renamed file

28

Figure 6 shows the unzipped apk file with the dex files and other resource files used in the app.
These are the compiled java source code files. Converting these files to jar files is required to
open and analyze the class files as a java source code. To convert DEX files to jar file, we used

the open source dex2jar converter tool on a terminal.

assets 410/201910:38 PM File folder
fabric 4/10/2019 138 PM File folder
kotlin 410/2019 10:38 PM File folder
kotling 4/10/2019 10:38 PM File folder
lib 410/2019 10:38 PM File folder
META-INF 4102019 10:38 PM File folder
ckhttp3 4/10/201910:32 PM File folder
org 4/10/2019 10:38 PM File folder
res 410/201910:38 PM File folder
skcom 410/201910:38 PM File folder
|| AndroidManifestxml XML Document
|=| androidsupportmultidexversion.bd Text Document
| | classes.dex DEX File
| | classes2.dex DEX File
| | firebase-analytics.properties PROPERTIES File

Figure 5: Example of an unzipped apk file showing the class files in dex format and other resources

Step 4.3: convert the dex files to jar files

dex2jar classes.dex

Listing 5: dex to jar converting command

Step 4.4: Open the converted jar files using either jd-gui or jadx-gui tools. jd-gui has the
capability to link classes and methods, however, it is not capable to decompile the full source
code. On the other hand, jadx-gui decompiles better than jd-gui; however, it has no capability of

linking the classes.

In addition to the manual decompiling process, we also used an automated tool called Mobile
Security Framework (MobSF). It is an all in Android, iOS and Windows application security
analysis tool [61]. The advantage of this automated tool is, the capability to parse and report
security issues in the apps after performing the decompiling process. The tool also provides the

option to download the decompiled jar files for further analysis. Moreover, a browser can be used

29

to view and analyze the java source codes. However, like the jadx-gui tool, it has no linking

capability to follow classes and methods in different files.

Step 5: Analyze the source code. In static code analysis, the goal is to understand how the
application works and determine what kind of files created and what kind of user information are
saved. Manually searching for keywords and hard-coded scripts and class files are the required
activities in the static analysis. In this research, since the goal is to determine how the apps save
files and what security techniques are used, we analyzed the source code related to SQLite

database, shared preference files specific to the user data, internal and external storage operations.

As stated above, after we performed static analysis for each data storage, we followed the
dynamic analysis for that specific data storage. For the dynamic analysis, we used the Inspeckage
module on the Xposed framework. Inspeckage is a dynamic analysis tool developed to hook
methods in the apps to be analyzed [62], [63].

Step 1: Start the Inspeckage module on the smartphone

Step 2: Access the Inspeckage module with a browser on the research computer using the IP
address of the smartphone and port 8008. The URL looks like http://192.168.166.31:8008 for
specific our research setup. In this case, both the smartphone and the research computer have to
be within the same LAN (Local Network Area).

Step 3: Start the app to be analyzed within the Inspeckage and perform the usual activities

supported by the app, such as accessing user data from the cloud.
Step 4: Browse the required files and activities on the started browser on the computer.

3.2.3. Companion Apps Live Forensics Analysis

For our forensic investigation, we approached live analysis on the smartphones instead of
imaging phone. This saved time and storage, which in turn, enabled us to perform the analysis
multiple times efficiently. We used tools such as ADB, sqlite3, ES file Explorer to directly access
the files and perform the analysis. Connecting the rooted phone to the computer and using the adb

shell provided the connection while the sglite3 command provided SQL.ite database operation

30

http://192.168.166.31:8008/

without extracting the database files. On the other hand, we used adb pull and ES file explorer to

extract files from the smartphone. In those cases, we used the SQL.ite browser and text editors to

open and analyze the extracted files.

1.

2
3
4.
5

The general steps to follow at this stage of the research, specific to the Android version
of the app:

Install the app on the smartphone to set up the 10T devices access the data

Root the smartphone using Android rooting tools

Investigate the phone image using analysis tools.

Live forensics on the client Android Apps.

For the live forensic analysis, we used two approaches depending on the convenience of data

presence for this research. The first approach is using the “sqlite3” and “cat” command on the

smartphone, without downloading the data to the computer. For this method, the following steps

are followed:

Step 1: Connect the rooted smartphone with the app using a USB cable

Step 2: Use the adb shell to get command line access to the smartphone

Step 3: Change the working directory to the specific app’s storage section

Step 4: Use appropriate commands for the particular files to be analyzed - sglite3 commands

for database analysis and “cat” for text files such as XML files in shared preference storage.

3.2.4. Network Investigation

Network investigation helps to understand the communication protocols and implemented

securities, identify communication APIs (official and unofficial), sensitive information (like

credentials or session) and exchanged user data during transit, etc. In network investigation, both

live and offline network analysis can be achieved. For this research, we used tools such as

Wireshark to understand the network flows, protocols and security methods used to protect the

communication between the apps and the I0T device and the cloud. Besides, for the companion

apps communication investigation, we used Man-in-the-Middle (MITM) attack approach and

proxy tools to intercept the communication traffic and analyze the requested APIs, tokens,

31

credentials and other user information. For our analysis, the MITM attack method revealed
unofficial APIs used between the apps and the respective Clouds along with the API
authentication methods and credentials.

Moreover, we used DevTools in browsers to watch and analyze network traffic between web
browsers and the cloud. This also helped us to analyze the APIs, the request and response headers,
and evaluate the responses of the APIs. In general, during network investigation, we analyzed the
network traffic data through both live or offline based on the situation. The network investigation
included the following general procedures:

A. Network traffic analysis between web browsers or web apps and the cloud

1. Using browsers network monitoring tool (DevTools) - watch and analyze the network
communication, the request and response headers, and determine/evaluate the responses

of the APIs and their security.

2. Using man-in-the-middle attack (MITM) - intercept the communication traffic and
analyze it either using live traffic analysis (directly during the communication) or offline

mode (capture the traffic and analyze it using other tools).

3. Using Wireshark - for live or offline network analysis by mirroring the traffic without

intercepting the traffic.
B. Network traffic analysis between 10T devices and the cloud

1. Using the Wireshark tool - intercept the communication traffic and analyze it either

using live traffic analysis (directly during the communication) or offline mode.

3.2.5. Cloud API Security Analysis and Demo
In order to test the cloud API security, we used the python request library on python version 3.6
environment [64]. After, constructing the APIs, the required header and parameter, either get or

post requests are performed to the cloud on behalf of the client apps.

32

3.3. Demonstration Tool Development

We used a Python script on the Python version 3.6 environment to develop the demonstration
for the tool. The tool includes basic functionality such as user interface to select where to save a

file and submit the required credentials.

3.4. Required Research Materials and Tools

To conduct our research, the following tools are used at different stages of our study. The tools

and systems are acquired as research support from LIFS laboratory and open source.

Table 3: Used research materials and tools
1D Name Source Relevance
Devices
For monitoring the devices
and app forensics
Smart Home loT devices LIFS Lab See Table 1 above
Research SW Tools
Burp Suite v1.7.36 and Sandroproxy

1 Samsung smartphone (Galaxy Note I1) LIFS Lab

N

3 V15117 Open Source Network Analysis

4 Wireshark v3.0.1 Open Source Network Analysis

5 MobSF v.11 beta Open Source Android App Analysis

6 Other Android App reverse engineering Open Source 10T Android apps reverse

and Analysis tool engineering and analysis

3.5. List of 10T Case Studied Devices

South Korea is one of the leading top ten countries in ICT developments. The 2017 ITU index
ranks the country in second place [65]. In addition to the availability of the Internet, it has strong
ICT research and incubation facilities where new trends of technologies such as 10T devices are
adapted and presented to the consumers at faster rates. After Amazon Alexa Al speaker device
release in 2014, Korean Telecom, Internet and Electronic companies have been developing smart
home 10T devices to dominate the local market. Companies such as Kakao, Naver, SK Telecom,
KT, Samsung, and LG are the mainstream developers of Al speakers and sensor-based smart

home automation devices.

33

For this research, the case study devices were selected based on their availability in the Korean
market and the availability of the devices in the Legal Informatics and Forensics Science (LIFS)
research laboratory. As a result, we selected two Al speaker devices from South Korean
Companies Naver Clova and SKT Nugu. In addition, to have a broader context for the research,
we also included two multipurpose sensors based loT devices from outside of Korea, Sen.se

Mother from France and Xiaomi smart home from China.

Table 4: Selected smart home 10T devices
10T Device Companion

1D Name Application Type App Manufacturer Country

1 Sen.se Mother Multipurpose Sensor Pocket Mother Sen.se France

2 Naver Clova Al Speaker Naver Clova Naver South Korea

3 SKT Nugu Al Speaker Aladdin/Nugu SKT Telecom South Korea

4 Xi::omi Smart Multipurpose Sensor Mi Home Xiaomi China
ome Kit

3.6. 10T Devices Set up Network Design

The selected devices were set up and configured in the Legal Informatics and Forensics Science
(LIFS) research laboratory. Since the laboratory is already set up for digital forensics research,
we used the existing network equipment such as the gateway devices and integrated the case study
lIoT devices. Figure 4 shows the network design for the laboratory, including other devices

connected to the network.

3.7. Assumptions

For this research, data collection will be conducted from scratch using the specified research
methodologies after updating the 10T devices and their Androids apps to the latest version.
However, for some of the devices to be analyzed, already existing research results (from LIFS
research lab) and collected data will be used due to the challenges to regenerate the data. Among

the problems, some of the devices are already disassembled, broken or run out of service.

34

Moreover, due to the difficulties in rooting and imaging process on the latest Android OS versions,
the App forensics investigation will be conducted on a smartphone with Android OS version 4.4
and 6.0. Finally, for the research user credentials (username and password) to the 10T devices are

assumed to be available whenever and wherever needed in the research process.

e A

Tesling
PC
Moation
IpTime E
Motion Gateway / Door 4
samsung = %
smartthing =
Door 2
Door 2 \ Xiaomi / \

Touch OnHub
e

Outlet 7 / \
2R

"N VAR

Kakao Giga Naver SKT Google Box Door 3
Mini Genie Clova Nugu Hor?e v v @

o

3.8. Summary

t
D)

o

= [

Presence Medication

Keys: Wifi == Zigbeel g Wired —|

Zwave

Figure 6: 10T Research network design and configuration

In this chapter, we presented the research methodology, the process and detailed procedure we
followed in conducting our research. Moreover, we discussed the research tools, selected study
devices, the network setup, and assumptions. For app analysis, we will use reverse engineering,
live forensics and network investigation using MITM attacks. For the device communication

security analysis, we will use traffic network analyzing tools such as Wireshark.

35

CHAPTER 4. CASE STUDIES

In this chapter, the investigation results of the studied case study devices are presented.
Although the order of the studied devices has no values, we presented the analysis result for the

Al speakers, first Nugu then Clova and next to the smart home automation devices.

4.1. SKT Nugu Al speaker

SKT Nugu is Artificial Intelligence (Al) enabled voice assistance from the Korean telecom
giant SK Telecom. Nugu was first released in 2016. It has two types: Nugu and Nugu Mini -
smaller version. Nugu’s wake words include “Aria”, “Tinkerbell”, “Crystal” and “Rebecca”. The
supported functionalities include Music streaming, Weather, Calendar, Alarm, Reminder,
Navigation, number of online shopping, and banking operations. It has SKT Nugu (Aladdin)

companion App used to set up, manage the device and access the user’s cloud data [66].

Figure 7: SKT Nugu Al speaker operation mode

As SKT did not provide a Web interface for the device management, SKT Nugu App is the only
available application used to set up the device and access user data collected by the device. At the
time of conducting this research, the latest version of the app is 2.3.0.

To set up the Nugu speaker, SKT account information required; specifically, TID subscription
is required. To sign up for TID, SKT provides the option to use existing accounts such as Google,
Naver, Facebook or Kakao and requires birthday information. Once the TID is created, using the
Nugu app user can register the device and start configuring it, basically setting the WIFI network

for the device. After the setup is complete, using one of the wake words, voice commands can be

36

issued to the device. Then the app is used to access the ordered services. In addition to accessing
data from the cloud, the app can also be used to issue commands such as setting alarms, reminders
and other functionalities using texts, instead of voice commands as in the case of the speaker.

As stated above, Nugu App is used to access user information and other ordered services. As a
result, these user data should be protected using data protection security techniques. These data
protection techniques should depend on the type of data and the location of data within the
ecosystem. For, recommended data protection techniques, see section 4.1.

In the following section, the analysis of the data security of the app is presented. As defined in
the scope of the research, the analysis focuses on the security techniques implemented to protect
user data while at rest and in transit. Apart from the app, the study also addresses the
communication security implemented between the speaker and the SKT cloud.

4.1.1. SKT Nugu (Aladdin) App Analysis

Based on the designed research methodology, we approached the analysis from three different
sectors. The first part addresses the security techniques implemented in the app to protect user
data saved on the smartphone storage. To achieve this, we conducted a combination of app
security and app forensics analysis. We performed static and dynamic analysis on the app using
the Android reverse engineering approach to identify the security methods implemented and
determine what impact they will bring for digital forensic investigation. For the forensics analysis,
we conducted live forensics on the app installed on Samsung Galaxy Note 2 with Android version
4.4 (KitKat). Moreover, we analyzed the app from network investigation perspectives using traffic
analysis through Wireshark and Man-in-the-Middle attack approach. In the following subsection,
we presented the detailed activities and findings of the study.
4.1.1.1. Nugu App Data Storage Security Analysis

For Nugu App reverse engineering, we used static and dynamic code analysis to understand the

logic behind the app and how the app behaves at run time. For our study, the first activity we

37

performed on the app was to perform static code analysis after extracting the app using adb pull
from the smartphone. After static analysis, we immediately followed the dynamic analysis to
determine how the files are created. Finally, at the third stage, we used live forensics approaches
using a combination of the Linux commands and adb operations. For database analysis, we also
used the sqlite3 commands. For some of the files, we also exported them to the local computer
using the adb pull operation and used tools such as SQLite DB browser and Notepad ++ editor.
Based on the stated procedures in the methodology section, we downloaded the app from the
smartphone and first used the manual method to reverse the app. The first step was to rename the

file and unzip the file to get the DEX files and then convert them to jar files.

e rootPath|Analysis\Nugu>adb pull /data/app/com.skt.aladdin-5.apk .

“ 2

® [n the above command the “.” indicates the current directory as a destination path.

e /data/app/com.skt.aladdin-5.apk: 1 file pulled. 4.4 MB/s (23656683 bytes in 5.119s)
e Renamed the file by changing the .apk extension to .zip extension.
e Com.skt.aladdin-5.apk into com.skt.aladdin-1.zip

e Unzipped the renamed file

| classes.dex DEX File
| classesd.dex DEX File
_| firebase-analytics.properties PROPERTIES File

Figure 8: Nugu Unzipped apk, showing the class files in dex format and other resources compiled to form the app

From figure 8, we can see that there are two DEX files. These are the compiled java source code
files. Now converting these files to jar files is required to open and analyze the class files as a
java source code. To convert DEX files to jar file, we used the open source dex2jar converter tool

on a terminal. Convert the dex files to jar files:

dex2jar classes.dex

dex2jar classes2.dex

After converting the DEX files to jar file, we used jd-gui to open analyze the source codes. We

also used the jadx-gui for some of the files that were not decompiled due to the limitation of gd-

38

gui. Since jadx-gui has the ability to convert from apk to java source code, only opening the apk
file is enough. The limitation is, it has no capability of linking the classes and methods as jd-gui.

In addition to the manual decompiling process, we also used an automated tool called Mobile
Security Framework (MobSF). As stated in the methodology section, the advantage of this
automated tool is, the capability to parse and report security issues in the apps after performing
the decompiling process. The tool also provides the option to download the decompiled jar files
for further analysis. Moreover, the browser can be used to view and analyze the java source codes.
However, like the jadx-gui tool, it has no linking capability to follow classes and methods in

different files.

Figure 9: Nugu App information after decompiled using MobSF tool showing detail information about the app
including the version and hashes

The following section presents the findings in the Nugu apk static analysis for each of the
storage options. For Nugu App code analysis, the first thing we did was to figure out how the app
creates the database and what security is implemented to protect data in the SQL.ite database.

From the source code, we were able to understand what database and tables are created. Figure
10 shows code snippets from the app used to create the SQLite database and its tables. The
database name is _SSO.db, and it has three tables, TokenTank, LocalTokenTank, and packages.
TokenTank is used to store the session id and tokens used for the app, and the LocalTokenTank
has a copy of the TokenTank. On the other hand, the packages table used to store information

about the app itself.

39

private a gi)

1
this.d = new a(this.e, "_550.db™, null, 281R8138);
¢ = this.d.getWritableDatabase();
return this;

h

public wvoid onCreate(5SQLiteDatabase paramSQLiteDatabase)

i
c.al"_550 MIG_, DB Create");
paramsQLiteDatabase.execSQL{"CREATE TABLE TokenTank (_ID INTEGER PRIMAF
paramsQLiteDatabase.execSQL{"CREATE TABLE LocalTokenTank (_ID INTEGER F
paramsQLiteDatabase.execSQL{"CREATE TAELE Packages (_ID INTEGER PRIMARY

try {
String]] split = strari3].split™");
ContentValues contentValues = new ContentValues();
contentValues put"userlD ,i2.a[5p|itj[l].trim[j:j:ﬁ
contentValues. puti"sessionlD”, i2.al(split1].trim{1)};
contentValues. put{token”, i2.alsplit 2] trim{)1);
contentValues put{ realyn”, split[2].trim(});
contentValues. put{"createDate”, split/d]);
contentValues. put{"encryptedType”, IntegervalueOf 10011},
if icreplacel TokenTank”, null, contentvalues) = -1) {
jd++
Figure 10: Nugu App data creation code snippets

From the source code, we were able to understand what information the app saves in the
database. Besides, to the static analysis on the source code, we also did dynamic analysis using

tools such as Inspeckage. Figure 11: shows the Inspeckage analysis result.

RAW Dir: /data/data/com.skt.aladdin/databases File: google_app_measurement_local.db
R/ Dir: /data/data/com.skt.aladdin/databases File: _SS0.db

R/MAW Dir: /data/data/com skt aladdin/databases File: S50 .db

R/AW Dir: /data/data/com.skt.aladdin/databases File: _S50.db

R/AW Dir: /data/data/com.skt.aladdin/databases File: _S30.db

RAW Dir: /data/data/com. skt aladdin/databases File: hitp_auth.db

RAW Dir: /data/data/com. skt aladdin/databases File: hitp_auth.db

RMW Dir: /data/data/com.skt.aladdin File: databases

Figure 11: Nugu app database dynamic analysis result from Inspeckage

From the above analysis, it is quite imperative to understand what information the app is saving
and what kind of tables it creates. However, there are no data security considerations, except the

database is created in the private storage, since the default MODE_PRIVATE attribute is applied.

40

In addition to the app analysis, we also did live forensics analysis to understand how the app
stores the data in the databases. To perform, the analysis we used the sglite3 command tool. After
connecting the smartphone to the research computer, we get access to the device through the adb
and shell commands. Once we navigated to the apps private storage
/data/data/com.skt.aladdin/databases/, we used the sqlite3 tool to load the schema of the database
and investigate the tables and their respective data. The following listings show the commands

executed and the results as shown on the terminal.

sglite> .dump
PRAGMA foreign_keys=OFF;
BEGIN TRANSACTION;
CREATE TABLE android_metadata (locale TEXT);
INSERT INTO "android_metadata" VALUES('en_US");
CREATE TABLE TokenTank (_ID INTEGER PRIMARY KEY AUTOINCREMENT, userID
VARCHAR(200) NOT NULL UNIQUE, sessionID VARCHAR(100) NOT NULL, token
VARCHAR(300) NOT NULL, realYn VARCHAR(5) NOT NULL, encryptedType INTEGER
DEFAULT 0, createDate INTEGER);
INSERT INTO "TokenTank" VALUES(1,'9Q3Ah1d6SWU234J3IN3Jil-
jF3sdfDkF13_3DmUvd2s''AuRo_afcAA9IwegRVd-XikvQmeG_2ZuWgKEy1-
IDVUvWQKTFN5WgMKKSsyiGVAzYV','re-PODRasGsIT2pomZMxUC78E8pt353c-
PcFd9frah4AP2Z55RI1jGrJYsMh3ylbiDgKG-
3phabAjJHpM9IQHV0S2ub9KI4rtkdeG5KpMIJOhDZsL_y1nFT3VqYzITSIU7AXnltLzevKp
_toB9-BMbsw',"Y",1001,1536752453000);
CREATE TABLE LocalTokenTank (_ID INTEGER PRIMARY KEY AUTOINCREMENT,
userlD VARCHAR(200) NOT NULL UNIQUE, sessionID VARCHAR(100) NOT NULL,
token VARCHAR(300) NOT NULL, realYn VARCHAR(5) NOT NULL, encryptedType
INTEGER DEFAULT 0, createDate INTEGER);

Listing 6: dump command returns the current state of the tables in the database

The result from the live forensic analysis shows that the SSO database and the tables created
have the current values for the information specified in the source code. More importantly, as the
investigations show, there is no encryption applied to the data.

Next, to the database, the other data storage we investigated was shared preference. In the source
code analysis, we learned that the app creates an XML file to save user login related information

in a key-value format. Figure 12 is a code snip from the shared preference manager class.

41

public final class MuguPreferenceManager implements a {

public static final MuguPreferenceManager b;

private static final SharedPreferences c;

private static Map=35tring, SharedPreferences= d = new LinkedHashMap();

private static final StringPreference e = new StringPreference(LastGetTIDLoginiD™, true, mull, null, 12, null);
private static final BooleanPreference f = new BooleanPreference("AutoLogin®, true, false, null, 12, null};
private static final StringPreference g = new StringPreference(LastGetToken”, true, null, null, 12, null);
private static final StringPreference h = new StringPreference(LastGetlD, true, null, null, 12, null};

private static final StringPreference i = new StringPreferencel LastGetDeviceEncrypt”, true, null, mull, 12, null});
private static final StringPreference j;

' 'Fiéuré 12: SKT Nugu shared preference manager code snippet

From the code, we can understand that login information is saved in the file. Next, we analyzed
the same file using the dynamic analysis tool, Inspeckage to determine how the app writes the
information. From the analysis, we understood that the app saves user login credentials such as
TID, token and device ID as plain text in two files, com.skt.nugu.xml, and

com.skt.nugu.some_number.xml.

GET[com.skt.nugu.824608292 xml] String(selectedDeviceld , ALDEPCKHWZ4E73D1F229)
GET[com.google.android.gms.analytics.prefs.xml] Long(monitoring:count | 1)
73 GET[com.google.android.gms.analytics.prefs.xmi] Long(monitoring:start , 1548861261425)
'3 GET[com.skt.nugu.xml] String(LastGetTIDLoginID , s==m=="1)
.8 GET[com.skt.nugu.xml] String(LastGetiD , ALDEZM1ZBOL33EF872B5)
) GET[com.skt.nugu.xml] String(LastGetToken , A320ES98E20B418786E74797FF0A934B)

Figure 13: SKT Nugu shared preference dynamic analysis Inspeckage output

Moreover, after analyzing the app using reverse engineering and live forensics analysis, we
extracted the files from the smartphone and analyzed them offline using text editors. The first file
com.skt.nugu.xml saves most of the login information while the second file
com.skt.nugu.some_number.xml saves the device type and device ID. The only value that was
encrypted in the com.skt.nugu.xml file is LastGetdeviceEncrypt. Figure 14 shows one of the files
using text editors. During the forensic analysis, we found that there is another XML file in the
shared preference called com.sktelecom.pref.xml. After opening the file, we learned that the
values are encrypted. However, from the keys, it is easy to determine what information is being

saved in the file.

42

static final /~ synthetic % KProperty] a = new KPropery{Reflection. mutableProperty1(new MutableProperyReference1lmp

<string name="LastGetToken">193E382F7AFF43D18DA60762A6E50D61</string>
<string name="LastGetID">ALDEZM1ZBOL33EF872B5</string>

<string name="LastGetDeviceEncrypt">dk393woA300Cs1d0</stxring>
<boolean name="AntoLogin" value="false" />

<string name="LastGetTIDLoginID">__ _.'I}f/stzznq.»

Figure 14: com.skt.nugu.xml file

The other data sources in the app storage were internal and external memory storage. From the
code analysis, we learned that the app saves data to the storage without any security features.
Analyzing the AndroidManifest file indicates that the app writes to external storage. Moreover,
using the MobSF tool, we learned that the app saves user data in external storage without any
security considerations. From the forensic analysis, we learned that the app saves cache data in
the internal storage of the app. On the other hand, during our analysis, we could not find user data
saved on the external storage under the app’s name. Figure 15 shows the security analysis report

from the MobSF tool.

android.permission.WRITE_EXTERNAL_STORAGE read/modify/delete Allows an application to write to the SD card.
SD card contents
android.permission.READ_EXTERNAL_STORAGE read SD card Allows an application to read from SD Card.

contents

Figure 15: Permissions in the SKT Nugu Androidmanifest file

4.1.1.2. Nugu App Network Investigation

The other security point of view we analyzed the app was, the implemented network security
between the app and the SKT cloud. To perform the investigation, we used two approaches
specified in the research methodology section. The first approach was capturing the network
traffic using the Wireshark analyzer. From the analyzer, we understood that the app uses TLSv1.0

to encrypt the communication channel.

43

152.168.137.25 api.sktnugu.com TLSvl 491 Application Data

api.sktnugu.com 192.168.137.29 TLSv1 836 Application Data
192.168.137.29 nog.sktnugu.com TLSv1 518 Client Hello
nog.sktnugu.com 192.168.137.29 TLSv1 3814 Server Hello

Figure 16: Communication security between SKT Nugu App and SKT cloud

The second approach was utilizing the MITM attack. First, from the source code analysis using
the MobSF tool, we learned that the app is vulnerable to MITM attack due error in handling third-
party certificates. Figure 17 shows a code snippet from MobSF analysis tools. Then, to conduct
the attack, we used the Burp Suite proxy tool. From the attack, we managed to intercept user-
related information such as tokens, TID and device ID. More importantly, we managed to extract

the APIs used to request user data from the cloud.

public void onReceivedSslError(WebView webView, SslErrorHandler sslErrorHandler, SslError sslError) {
if (webView instanceof S50WebView) {
webView = (SSOWebView)webView;
if (webView.c != null) {
c.a("remove handler runnsble");
webView.c.removeCallbacks(webView.d);
b
if (webView.a != null) {
webView.a.setVisibility(4);
b
if (d.c) {
ss1ErrorHandler.proceed();
return;
}
webView.b.a(d.a.f, null);
webView.b = null;
sslErrorHandler.cancel();
return;
b

super.onReceivedsslError{webView, sslErrorHandler, sslError);

Figure 17: SKT Nugu app sslError handling method code snippet

From the network analysis, we learned that during the login process, the app detects the proxy
setting using the certificate information. Once the login process is passed without the proxy setting,
the subsequent requests can be captured using the MITM attack.

Using this method, we were able to capture the APIs requests and the access token along with
other user and smartphone device information. Figure 18 depicts the information captured using
the MITM. The user’s ID and TID were used to identify the user during the data requests using

the APIs. For example, APIs such as device information and alarm look like the following

44

https://api.sktnugu.com/vl/setting/devices/v2 and

https://api.sktnugu.com/v1/setting/menu/services/service TypeCodes/SVC ALARM. With the

auth-token and other user information, requests can be done to fetch user data from the cloud.

Name | Walue

GET Hvllzetting/commonsapp HTTPM 1
Content-Type application/jzon; charset=utf-2
Auth-Token AJ20ESBBEZ0B418786ET4TETFF0AS340
User-id ALDEZM1ZB0OL3I3EFET2B5
O=-Type-Code MBL_AND

Os-\ersion 442

App-Verzion 230

Target-Device-id ALDEPCKHWZ4ET3ID1F229
Target-Device-User-External-ld

Target-Device-Type-Code DVC_SPK

T-Io =

Application-Type NUGU_&aPP

Phone-ModelName SHW-E250L

appPhase prd

Host api.zktnugu.com

Connection close

Accept-Encoding gzip, deflate

User-Agent okhttp/3.10.0

Figure 18: Intercepted Nugu Android App information
Auth-Token=2BFB91EC08D046199385C7EC290546CC

In SKT Nugu, for some of the APIs which are used to access another service, additional
identification tokens are also used. For instance, for Melon Music Service request, Melon ID is
required to access user data. Therefore, the user has to register independently for the service and
use that ID to access the service. Later, that ID is included in the API request to access the service
and acquire user data from the Melon service cloud.
4.1.2. Nugu Al Speaker Device Network Investigation

In this research, we investigated the implemented communication security method in SKT Nugu
Al Speaker by intercepting the traffic between the loT devices and the backend cloud using the
Wireshark traffic analyzer. Similar to the App, SKT Nugu uses TLSv1.0 between the speaker
device and the SKT cloud. Moreover, it pushes firmware updates to the device as a plaintext. A
checksum is the only security applied to verify the integrity of the firmware. From the captured

firmware, it is possible the get the update package information including the version. This kind

45

https://api.sktnugu.com/v1/setting/devices/v2
https://api.sktnugu.com/v1/setting/menu/services/serviceTypeCodes/SVC_ALARM

of vulnerability may lead to control the device by replacing the firmware with backdoored
firmware. Moreover, one of getting the device's firmware is by intercepting the update from the
network, during the update process called the sniffing Over-The-Air (OTA) process [67]. [68]
demonstrated Xiaomi smart home gateway hack using the unencrypted firmware update process.
4.1.3. Results Analysis

From our investigation of SKT Nugu Al Speaker and the companion security, we learned that
there are some security vulnerabilities which can be used for the benefit of a digital forensic
investigation. From the apps, lack of data storage security enabled us to access the tokens, TIDs
and device IDS that can be used to login to the cloud and acquire user data through the APIs
extracted using the MITM attack. Specifically, the analysis of the shared preference files revealed
all the login credentials for the API authorization to acquire user data from SKT cloud. However,
the data on the SQL.ite database was not valuable in our data acquisition process. Similarly, from
the vulnerability in handling SSL certificate error, we were able to intercept the login credentials
and API requests to the cloud. More importantly, intercepting the traffic using the MITM attack,
enabled us to extract the APIs and understand the request parameters and header information for
the APIs. Using those API, we developed a cloud data acquisition tool to acquire user data from
SKT cloud automatically. On the other hand, the network investigation using the Wireshark tool,
revealed the communication security used, which is TLSv1.0. At the time of writing this thesis
research, TLSv1.0 was at the verge of obsoleteness due to the vulnerability in the protocol design.
During this research, although we did not try to attack the device using the vulnerability in the
device firmware updating process, researchers in Northern University College of Computer and
Information Science demonstrated that through firmware update vulnerability they were able to

take over Xiaomi smart home device by replacing the firmware by modified firmware [68].

46

4.2. Clova Al speaker

Naver Clova is Artificial Intelligence (Al) enabled voice assistance from the Korean search
engine company Naver in collaboration with a company called Line. Naver Clova comes in two
kinds Brown, and Yellow colored with wake words “Sally” and “Clova” respectively. The
supported functionalities include Music streaming, Weather, Calendar, Alarm, Reminder,
navigation, and many online shopping options. It has a Naver Clova companion App to manage

and access user’s cloud data. The app also supports voice commands from the smartphone [69].

Figure 19: Naver Clova Al speaker operation mode

Since Naver did not provide a Web interface for device management, the Naver Clova app is
the only available application used to set up the device and access user data collected by the device.
At the time of conducting this research, the latest version is 2.13.0.

To set up the speaker, Naver account information required. Once the account is created, using
the app users can register the device and start configuring it, basically setting the wifi network for
the speaker. After the setup is complete, using the wake words, voice commands can be issued to
the device. Then the app is used to access the ordered services. In addition to accessing data from
the cloud, the app can also be used to issue commands such as setting alarms, reminders and other
functionalities using voice commands in the same way to the speaker.

As stated above, the Naver Clova App is used to access user sensitive user information and
other ordered services. As a result, these user data should be protected using the recommended

security techniques.

a7

In the following section, we presented the security analysis of the app using the stated
methodologies. As defined in the scope of the research, the analysis focuses on the security
techniques implemented to protect user data while at rest and in transit. Besides, the study also
addresses the communication security implemented between the speaker and Naver cloud.

4.2.1. Naver Clova App Analysis

Based on the designed research methodology, we approached the analysis from three different
sectors. The first part addresses the security techniques implemented in the app to protect user
data saved on the smartphone storage. To achieve this, we conducted live forensics on the app
installed on Samsung Galaxy Note 2 with Android version 4.4 (KitKat). The smartphone is rooted
for the research purpose, in the same way, we used for Nugu App.

Moreover, we performed static and dynamic analysis on the app using Android reverse
engineering approach. Finally, we analyzed the app from network investigation perspectives
using traffic analysis through Wireshark and Man-in-the-Middle attack approach. In the following
subsection, we presented detailed activities and findings for the study.
4.2.1.1. Naver Clova App Data Storage Analysis

For our analysis, the first activity we performed on the app was to perform static code analysis
after extracting the app using adb pull from the smartphone. After static analysis, we immediately
followed the dynamic analysis to determine how the files are created. Finally, at the third stage,
we used live forensics approaches using a combination of the Linux commands and adb
operations on the smartphone. For database analysis, we also used the sglite3 commands. For
some of the files, we also exported them to the local computer using the adb pull operation and
used tools such as SQL.ite DB browser and Notepad ++ editor.

Using the manual decompiling process, we extracted the dex files from the apk file and
converted them to jar files to analyze using java decompiling tools. Naver Clova app has three

dex files. These are the compiled java source code files. Now converting these files to jar files is

48

required to open and analyze the class files as a java source code. To convert DEX files to jar file
we used the open source dex2jar converter tool.

In addition to the manual decompiling process, we also used an automated tool called Mobile
Security Framework (MobSF). The advantage of this automated tool is, the capability to parse
and report security issues in the apps after performing the decompiling process. Figure 20 shows

the app information provided by MobSF.

App Information

e e e com.haver.nozzle

PO ROl com.naver.nozzle.activities.IntroActivity

SDK EBm k] Max SDK

[[ET 2.13.0

i

Code L%

Figure 20: Naver Clova App information after decompiled using MobSF tool showing detail information about the
app including the version

Similar to the Nugu App case, since the goal is to determine how the apps save files and what
security techniques are used, we analyzed the source code related to SQLite database, shared
preference, internal and external storage operations.

The following section presents the findings in the Clova apk static analysis for each of the
storage options. For Nugu App code analysis, the first thing we did was to figure out how the app
creates the database and what security is implemented to protect user data in the SQL ite databases.

From the source code, we were able to understand what database and tables Naver Clova app
creates. Figure 21 shows the code snippet from the app used to create the SQL.ite database and its
tables. The database name is line_preference.db and two tables named notification_pref and

notification_image. From the analysis, we learned that notification_pref is used to store

49

notification messages in JSON format while the notification_image table saves image files

probably used in the notification.

public NotificationPrefDBHelper(Context paramContext)
i

super(paramContext, "linenotice_pref.db”, null, 2);

H

private void createTable(SQLiteDatabase paramsSQLiteDatabase)

{
paramSQLiteDatabase.execSQL("CREATE TABLE notification_pref (_id INTEGER PRIMARY KEY,noti_id LONG,noti_json_data STRING,noti_read_timestamp LONG);");
paramSQLiteDatabase.execSQL("CREATE TABLE notification_image (image_url STRING PRIMARY KEY,notilid LONG,image_data BLOB);");

H

private void dropTable(SQLiteDatabase paramSQLiteDatabase)
i
paramSQLiteDatabase.execSQL("DROP TABLE IF EXISTS notification_pref");
paramSQLiteDatabase.execSQL("DROP TABLE IF EXISTS notification_image");
H

Figure 21: Naver Clova app database creation code snippet

As stated above, from the source code, we were able to understand what information the app
saves in the database. Besides, to the static analysis on the source code, we also tried to do
dynamic analysis using Inspeckage. However, during this research, the app keeps crashing during
our trial on our research phone, which was rooted and had dynamic analysis tools such as Xposed.
Later during our network investigation, we learned that it sends a crash report as a plain text.
From the crash result, we understood that the app has the capability to detect rooted phones.

From the above analysis, it is quite imperative to understand what information the app is saving
and what kind of tables it creates. However, there are no data security considerations, except the
database is created in the private storage and the default MODE_PRIVATE attribute is applied.
To verify this, we used the MobSF tool to analyze the applied securities. However, the tool
complained that the app does not use encryption methods to secure the database.

In addition to the static analysis, we also did live forensics analysis to understand how the app
stores the data in the databases. To perform, the analysis we used the sglite3 command tool. After
connecting the smartphone to the research computer, we get access to the device through the adb
shell ~ command. Once we navigated to the apps private storage

/data/data/com.naver.nozzle/databases/, we used the sqlite3 tool to load the schema of the

50

database and investigate the tables and their respective data. The following listings show the

commands executed and the results as shown on the terminal.

root@tOltelgt:/data/data/com.naver.nozzle/databases # sqlite3 linenotice_pref.db
SQL.ite version 3.7.6.3-Titanium

Enter ".help" for instructions

Enter SQL statements terminated with a ;"

sglite> .dump

PRAGMA foreign_keys=OFF;

BEGIN TRANSACTION;

CREATE TABLE android_metadata (locale TEXT);

INSERT INTO "android_metadata" VALUES('en_US");

CREATE TABLE notification_pref (_id INTEGER PRIMARY KEY,noti_id
LONG,noti_json_data STRING,noti_read_timestamp LONG);

INSERT INTO "notification_pref"
VALUES(1,1115043,'{"body":"","weight":0,"linkUrl":"" "interval":0,"bannerBtn2Text":"","r
epeat":true,"type":"page","btnType":0,"close™:1548946740000,"id":1115043,"open™: 1546268
400000, "revision":1437772,"title":"-7-<1 L} 2 2}
(2] & HEe3)","startupOnly":true,"marketAppLink":"","bannerBtnType":0, "bannerBtn1Url":""
,"bannerBtn2Ur!":"","countOnType":"","status":"OPENED","contentUrl":"https:\/Vlanimg-
beta.line-
apps.comVlan\V/zipstagingVpageEvent\/ClovaVandroidVkoVpopup_20181224 Android_3Ufe3
929556886287270393\/popup_20181224 AndroidV/popup_20181224.html","format™:1,"bann

erDescription™:"" "bannerTitle":"" "view":"" "bannerBtn1Text":"","immediately":false}',0);
Listing 7: Live Analysis of linenotice_pref.db file using the sglite3 command

The result from the live forensic analysis shows that the line_preference database and the tables
created have the current values for the information specified in the source code. More importantly,
as the investigations show, there are no applied encryptions to the data.

We also conducted an offline analysis of the database. After extracting the linenotice_pref.db
file using the adb pull operation, we analyzed it using the open source DB Browser for SQL.ite
tool. Figure 23: shows the result with the current data on the table. During this research, we could
not find image files saved in the table as specified in the source code. This might be due to

notifications are without picture files.

51

Edit Database Cell F X
DatsbaseStructure BrowseData EdtPragmas ExecuteSQL

Tabie: | [notfeaton_pref | [&] [4] [& (2] [NewRecord.| [pelete Record ode: Tert | [1] = | tmport Epal Setas UL

_id noti_id {"body":"","weight":0, "linkUrl":", "interval’:0,"bannerBtn2Text":", "repeatstrue, "type":"page", "btnType":0,"close": 1551365940000, "id":
[Fiter [Fiter [Fiter 1122233,"open"': 1550415600000, "revision": 1456252, "title":"VIBE 342 22 T2 HY

14", "startupOnly":true, "marketAppLink":
12 1122233 {"body":"","weight":0, "linkUrl":"","interval" 0,"bannerBtn1Url":™, "bannerstn2U
pageevent\/Clova\/android\/ko\/popup_20190214_00Iq8534416782150684319\/popup_20190214\/popup_20190214. html","format":
1,"bannerDescription”:™,"bannerTitle":™,"view": ", "bannerBtn1Text":"", "immediately":false}|

untOnType™:"","status":"OPENED", "contentUr|": "https:\/\/scdn. line-apps.com\/lan\/documenty/

Figure 22: Naver Clova app linenotice_pref.db file

Next, to the database, the other data source we investigated was shared preference. In the source
code analysis, we learned that the app creates multiple XML files to save user and app related
information in a key-value format. Among them, we suspected that two of them (clova.xml and
clovatoken.xml) are used to save user data required by the app. Figure 23 and 24: shows a code
snippet from the shared preference manager class in the app. From the codes, we can see that the
XML files are used for storing token values along with the client ID and Client Secret. Note,

client ID and Client secret is used to authorize and authenticate the app by Naver cloud server.

static String m493c(@NonNull ClovaEnvironment clovaEnvironment, @NonNull CicNetworkinfo cicNetworkinfo, @Non
Builder buildUpon = Uri.parse(clovaEnvironment.getValue(Key.authHostUrl)).buildUpon()
buildUpon.appendPath()i
buildUpon.appendQueryParameter
buildUpon.appendQueryParameter

);

, str);

buildUpon.appendQueryParameter(ParamConst. PARAM_DEVICE_ID, clovaEnvironment.getValue(Key.deviceld))
buildUpon.appendQueryParameter
buildUpon.appendQueryParameter
return buildUpon.build().toString()

, clovaEnvironment.getValue(Key.clientld));
, clovaEnvironment.getValue(Key.clientSecret));

(
(
buildUpon.appendQueryParameter(ParamConst. PARAM_MODEL_ID, clovaEnvironment.getValue(Key.modelld));
(
(
(

Figure 23: Naver Clova app shared preference file editor code snippet

More importantly, from the code analysis, we identified that the Naver Clova app uses a security
module to protect data in the shared preference files. The code snippet in figure 24 shows the

SecuredSharedPrefence class with three different cipher algorithms used for XML files security.

52

public class SecuredSharedPreferences {
private final Cipher f14399a = Cipher.getinstance(
private final Cipher f14400b = Cipher.getinstance(

private final Cipher f14401c = Cipher.getinstance(

private final SharedPreferences f14402d;

Figure 24: Naver Clova app secured shared preference code snippet

Next, we analyzed the same file using the Inspeckage dynamic analysis tool to determine how
the app writes user information in the XML files. However, as stated in database analysis, since
the app keeps crashing when we try to run it within the dynamic analysis environment, we could
not get the dynamic analysis results. On the other hand, using the MobSF tool, we were able to
analyze the app dynamically. From the tool, we determined that the following XML files were
accessed during the app’s operation.

Moreover, after analyzing the app using reverse engineering, we extracted the files from the
smartphone and analyzed them offline using text editors. The first file clova.xml saves most of
the user and device information while the second file clovatoken.xml stores the tokens used for
the app. Figure 25 and 26 show the results using text editors. Besides,
NaverOAuthLoginPreferenceData.xml file has Naver app login information, including client id
and client secret in an encrypted format. After opening the file, we learned that the keys and values
in clova.xml are encrypted as specified in the source code. As a result, it is difficult to determine
what most of the information saved in the file. However, since the keys are not encrypted for
some part of the file, we were able to determine the information saved in the clova.xml file.

For the clovatoken.xml file saves token information used by Clova. In the file, one of the keys
specifies the token as a Bearer token; however, the actual value of the token is not the same as the

one captured using network analysis.

53

<?xml version="1.8' encoding="utf-8" standalone='yes' >
<map>

<string name="6BnbREMKI+35NriNoyDOfw==">KL+cBH2CTscUSLibAZKYZjOYZN4OTrBTE+14EMmralih+NtLAKVIYHNXTx22HzZCZH2Pegyk M4 Oxif ef LhfMKXR3NMBQ413KsPz
hahlvyK3B8G2wIKYVg4g080]1AZ2bdpCDIPKekPINMRpTVQLYAR==< /string>

<string name="073ZQbxKzbmT5T2K+zkIAw==">DXryqdnd4XdHy12NkNcMjbu==</string>

<string name="gnXsesVosSR2eFLkVOTKuQ==">mL1ktrh37duP7AuoK3tPEL+XGNKMXANB1F164D1BkAqmITul TXGS2MF7htAaQX 1WeemtgbbOxFqegtV7QPpfmrEQwPFIqGCRUINbC
7WNDubSBHiVgpQIebH1X11h1gpbpZfX@AgWRMhy FbkQ+TSWX256THPxtXb1IQXCgUBTYPsc7EM+EZIYY3vascqCVBOEsa/ VWRHkPPzPBmXXDnSE4pU7 7 rjAkprmlK1qG1euTkTBDrnelELQ
Bx+/FShBfapuAukdkSDdi3ThxBmIrf+AKHe Jut4dYEvtU]cdBuIRPFxN20aBr ZEIMBwpDgs4HGERX30MI /gr/4c JANBHSNdq jxy T Lx6 i 17 cAyWbzYgLkCUalc+C/1]g35FuCPstw)3gpnTPfu
y+f7ygeL3ABBLEONSBSTgPF+UIGCYYVRPBHYZZ JFd110xBEKTtEZ68RKLNINgUvIANX] /X3Kc36nGgeZke+erBalWAKBQws kmTABNTHE tRY 1eouTw7yjayRQP/ Z7 iAFGOTFaaDeVyC1XVOBC
1E2NzptalEpsTihGg5a3wrRo552took@aT 212108 JVM4LxmadUt4PqLBhAYKSY/ZSUsOUCE42C+3215FUFb+VBrFszelk57g51BMEAIS7BASIQ35pT4D1InitZ204L09035BRUESIGSPAXF
veTT4RN3upc150H9erzigXI0gvIQXc0gCarbiel k2YDi22QPjRLSKET180KB+2TeDqYiLEMQO WA TwrSCKT JGEqneSBHCQ3LyhEdzkase4,/ TousrIhAoSVINDy InovHzz8Vit TalnAlEdedvG
Jj#H5k0MI17sel¥FPBvoennmk/CF1F2sZbjSRSnqERhr1qP15YDS z8FayqEQqyD/ sBEWIFTTQ71/W+9gpky@AcelNYcHT ndt/SLBZNXHb] kvAQdy+0BeBuRMVEGX 3 kvlnTUS+FExxCHDmtaBd
hfEpuYgoupg==</string>

<string name="880352D1/flFMpSomC+zxA==">133Z6GNgHaaK1n3h4Dkj+0==</string>

<string name="/AZAUv3Qlg+077KCICZE5NEC15US/NaIONWA2TedxCk="">05r5nb01@t50nPQuB405EQ==</string>

<string name="ZhTNay/UyZ1QDIQpdvKLNg=="">gfCp5fvdBcbsG2VimgGQUu==</string>
sh
<boolean name="last_input_mode" value="fals
<boolean name="1is_set_user_id_to_nelo" walu
<int name="lastShownBadgeCount"” value
<boolean name="FCM

<boolean name

w_main_activity badge" value="trus" />

"

s

14
false" />
_agreement” value="false" />

token_updated” value=

<boolean name="ad

¢string name=
NasSug==</string»
<boolean name

2riD9sITodoLX5aybamPnGadygNIghoVdN1f1daiyJ4K]yyXC/Nh2G020qeD2KSi1usIrbpZix0TyijgdksqIcNugnEI IpInHBba3hL+g/4=">17ivjCw/2I1uLGib/

"is_newbie" value="false" /»

<string name="gQ056P1/10LKYQh45Fh]Lw=="">uxx1]6RXDWI1 zNUye0A0a LWtOH465B3G4REYBX3bMxXNQed iTHLpLY jaYuPEeCaBlbv510kLo2UtM2eDfhUPHGxNGhibeRBGHZMI T
¥ JHLBOFAkSHr JUDHdbvX]ShD/ hEFvmpEoNEUNbJwvUSiWEP/LgX+QG3rNPps228XgYiqlelatQdDbliGeg IxfTspOee3sKDmnd TSEYZr juahth72ikQ==</string>

<boolean name="is_show user_setting_activity badge" walue="t
</map>

e" />

Figure 25: Naver Clova clova.xml file with partially encrypted keys and values

?

<?xml version="1.8" encoding="utf-8' standalone='yes
<map>

<string name="tokenType">Bearer</string>

<null name="accessToken" /&

<string name="expiresIn"»>12968000</string>

<string name="refreshTokenV2" >VApnMiEDxg0zPel1AXQxIm0jzt2zFsXSobctXRT@WHIFT23IPgIkih/FosoB3jNIICIwibQ4TS]I
HgybZU34sxuEwi4Dz09810dk+FUpGid=

</string>

<string name="accessTokenV2" >KMHW1dbso4c0GgwiHBgg 2UF TDSyiqtyLqKoxs/ 2Z+1E+75]8uedVSJX7Fpy/UTEqNs i TXZMOVES]
3vMSOWMTAZEBK2ENQb+GOPTMDLr iMBs=

</string>

<null name="refreshToken™ />
<string name="expiredAt”>1551520786689</string:
</map>

Figure 26: Naver Clova app clovatoken.xml file with current token values
In addition to the XML files, from the app analysis, we also found the base of the APIs in the
source code. Figure 27 shows the base of the APIs and the URL to the authentication server. Later
we extracted all the APIs using the Man-in-the-Middle attack, see the Naver Clova network

investigation between the app and the cloud section.

54

10¢alc, g = PreferenceManager, getDefaultsnarecPraferences((Context)this). getstring{"hostur]
final Stringl] arrayOfStringl « new String(?];
. *hito gev-cf 0.05/%;

2.1/
S

final String(] arcayOfString2 «» new String({8);

* "https://stage-cic.clo

arrayOfSteingi(6) = mtpo:llpfu-'nl-'de.d
Figure 27: Naver Clova APIs base URL in the extracted apk file

The other data source we analyzed were, the internal and external memory. From the code
analysis, we learned that the app saves data without any security features applied. Analyzing the
AndroidManifest file indicates that the app writes to external storage. Moreover, using the MobSF
tool, we learned that the app saves user data without any security considerations. From the
forensic analysis, we learned that the app saves cache data in the internal storage of the app.
Similar to the Nugu app case, during our analysis, we did not find user data saved on the external

storage under the app’s name. Figure 28 shows the security analysis report from the MobSF tool.

android.permission.READ_EXTERNAL_STORAGE read SD card contents Allows an application to read from SD Card.
android.permission. WRITE_EXTERNAL_STORAGE read/modify/delete SO Allows an application to write to the 5D card.

card contents

Figure 28: Naver Clova app permissions in the Android manifest file

4.2.1.2. Clova App Network Investigation

The other security point of view we analyzed for the Clova app was the implemented network
security between the app and the Naver cloud. To perform the investigation, we used two
approaches specified in the above research methodology section. The first approach was capturing
the network traffic using the Wireshark analyzer. From the analysis, we understood that the app

uses TLSv1.2 to encrypt the communication channel.

192.168.137.148 prod-ni-cic.clova.ai TLSvl.2 327 Application Data
192.168.137.148 prod-ni-cic.clova.ai TLSvl1.2 119 Application Data
prod-ni-cic.clova.ai 192.168.137.148 TLSv1.2 256 Application Data
prod-ni-cic.clova.ai 192.168.137.148 TLSvw1.2 224 Application Data

Figure 29: Communication security between Naver Clova App and Naver cloud

55

On the other hand, during our network investigation using Wireshark, we learned that Naver
Clova sends crash analytics data without any security. The data includes the main class, the root
status of the phone, the network state and the IP address assigned to the phone.

The second approach to the network investigation was using the MITM attack. From the source
code analysis using the manual and automated analysis, we could not learn how the app handles
third-party certificates, in different web activities except for the Facebook web activity call. For
the Facebook web activity call, in case of sslError, the app is forced to cancel requests using the
sslError.cancel() function.

Even though we could not get hints from reverse engineering of the app, we carried outa MITM
attack to the app. To conduct the attack, we used the free version of Burp Suite proxy tool. From
the attack, we learned that during the login process, Naver Clova detects proxy settings. Therefore,
we have to first login without proxy settings and try the attack. Then, we figured out that, once
the login process is passed, the app does not check for third-party certificates. As a result,
subsequent requests were captured using the MITM attack. Using this method, we were able to
extract the communication APIs and the bearer token (shown in figure 30) used for authorization
of the API requests. For example, the API to acquire alarm information looks https://prod-ni-

cic.clova.ai/internal/v1/api-gw/alerts/. Using this API with the authorization token, we were able

to obtain user data from the cloud.

User—-Agent: Clovakpp/indroid/sZ2_.132.0 (Android 4.4.
Authorization: EBearer VeaRURS6(0ZeTgqumaCPOrfw
Content-Type: application/json; charset=UTF-8
Content-Lengtlh: 135

Host: prod-ni-cic.clowva.ai

Commection: close

Accept-Encoding: gzip, deflate

Figure 30: Naver Clova Bearer Token intercepted using MITM attack

Authorization = Bearer VcaRU596QZe7gxmaCP8rfw

56

https://prod-ni-cic.clova.ai/internal/v1/api-gw/alerts/
https://prod-ni-cic.clova.ai/internal/v1/api-gw/alerts/

We also learned that the API could be used to acquire alarm, reminder and alert information
from the cloud by setting the requested message type in the body of the API request as shown

below. In all requests, the same bearer token is used for authorization of the APIs.

{"method":"GET","path":"/api/pims/alerts/setting-
list/","query":{"type":"ALARM","deviceldList":"422063af-8ea2-3e79-a84a-

a5cd50143fad"}}

During our research, apart from the network interception using the MITM attack, we could not
find the bearer token anywhere else. In the app analysis, in the shared_prefrence folder
clovatoken.xml file saves access token that says bearer token with no value and a couple of refresh
tokens, however, using those tokens to request data returned Unauthorized Error (401). Moreover,
the length of the bearer token captured in the network and the one that was found in the
clovatoken.xml file is different. The bearer token captured from the network is shorter than bearer
token saved in the file.

4.2.2. Clova Al Speaker Device Network Investigation

In this research, we investigated the implemented communication security method in Naver
Clova Al Speaker by intercepting the traffic between the device and the backend cloud using the
Wireshark traffic analyzer. Similar to the App, Naver Clova uses TLSv1.2 between the speaker

device and the Naver cloud.

583 Client Hello

192.168.137.232 nelo2-col.navercorp.com TLSv1.2

nelo2-col.navercorp.com 192.168.137.232 TCP 118 443 » 58542 [ACK] Seg=1 Ack=518 Win=38888 Len=8 TSval=10856@15813 TSecr=172328
nelo2-col.navercorp.com 192.168.137.232 TLSv1.2 30814 Server Hello

nelo2-col.navercorp.com 192.168.137.232 TCP 3014 443 > 50542 [ACK] Seq=1449 Ack=518 Win=38030 Len=1448 TSval=1050015815 TSecr=172320 [TC
nelo2-col.navercorp.com 192.168.137.232 TLSV1.2 954 Certificate, Server Key Exchange, Server Hello Done

192.168.137.232 nelo2-col.navercorp.com TCP 66 58542 » 443 [ACK] Seq=518 Ack=1449 Win=98624 Len=0 TSval=172322 TSecr=10858@15815
192.168.137.232 nelo2-col.navercorp.com TCP 66 58542 = 443 [ACK] Seq=518 Ack=2897 Win=93440 Len=8 TSval=172322 TSecr=1850@15815
192.168.137.232 nelo2-col.navercorp.com TCP 66 58542 > 443 [ACK] 5eq=518 Ack=3315 Win=96512 Len=8 TSval=172322 TSecr=1850@15815
192.168.137.232 clova-ota-auth.clova.ai TCP 66 49574 » 443 [ACK] Seq=851 Ack=7148 Win=185216 Len=@ TSval=172324 TSecr=3822793064
prod-ni-cic.clova.ai 192.168.137.232 TCP 118 443 = 46884 [ACK] Seq=11646 Ack=61977 Win=1432 Len=@ TSval=1318644257 TSecr=172318
192.168.137.232 nelo2-col.navercorp.com TLSv1.2 192 Client Key Exchange, Change Cipher Spec, Encrypted Handshake Message
nelo2-col.navercorp.com 192.168.137.232 TLSV1.2 666 New Session Ticket, Change Cipher Spec, Encrypted Handshake Message

192.168.137.232 nelo2-col.navercorp.com TLSv1.2 1178 Application Data, Application Data

nelo2-col.navercorp.com 192.168.137.232 TLSV1.2 1114 Application Data

192.168.137.232 nelo2-col.navercorp.com TLSv1.2 97 Encrypted Alert

nelo2-col.navercorp.com 192.168.137.232 TCP 118 443 » 58542 [FIN, ACK] Seq=4887 Ack=1779 Win=32256 Len=8 TSval=1850@15896 TSecr=172328

Figure 31: Encrypted network traffic between Naver Clova Al speaker device and cloud

57

4.2.3. Results Analysis

From our investigation of Naver Clova Al Speaker and the companion security, we learned that
there are some security vulnerabilities which can be used for the benefit of a digital forensic
investigation. From the apps, lack of data storage security enabled us to access the data from the
database, which can be considered as user history log. The analysis of the shared preference files
revealed that the app uses encryption to secure information saved on the clova.xml file. However,
from one of the clovatoken.xml files, we were able to identify token information, but the tokens
were not useful to acquire user data from the cloud. Similarly, from the vulnerability in handling
SSL certificate error, we were able to intercept the bearer token and API requests to the cloud.
More importantly, intercepting the traffic using the MITM, enabled us to extract the APIs used to
acquire user data from the Naver cloud. Using those API, we developed a cloud data acquisition
tool to acquire user data from the cloud automatically. On the other hand, the network
investigation on the app using the Wireshark tool revealed the communication security used is
TLSv1.2. However, we also managed to capture the crash reports in plain texts with valuable
information, such as user’s device status information and network information. Finally, the device

also uses TLSv1.2 to encrypt traffic to the cloud.
4.3. Xiaomi Smart Home Kit

Xiaomi Smart Home Kit is a product of Xiaomi Company based in China. The smart home kit
contains one Home automation unit (Gateway - called Lumi gateway), smart wireless switch (to
control connected devices), door or window sensor (sense door or windows opening and closing
activities) and smart plug (automate power operation for non-loT devices). The gateway is the
central hub that connects the sensors using ZigBee protocol and Wireless Internet to the Xiaomi

cloud. Mi Home smartphone app is used to configure and monitor the Kit [70].

58

Xiaomi
- Cloud
Zigbee

./

Xiaomi did not provide a Web interface for the device and user data management; the Mi Home

Figure 32: Xiaomi Smart Home Kit operation mode

app is the only available application used to set up the device and access user data collected by
the device. At the time of conducting this research, the latest version is 5.5.10; however, to run
the app on Android KitKat, we used 5.1.30.

To set up the Xiaomi gateway device and the sensors, account information required. Once the
account is created, users can register the device and start configuring it using the app, basically
setting WIFI network for the gateway, identification and adding sensors to the gateway. Then the
app is used to manage the devices and access log data from the sensors through the cloud.

As stated above, Mi Home App is used to access user sensitive user information and manage
the devices. As a result, these user data and the devices should be developed with security
techniques to protect attack on user data and the devices.

In the following section, we presented the security analysis of the app using the stated
methodologies. As defined in the scope of the research, the analysis focuses on the security
techniques implemented to protect user data while at rest and in transit. Apart from the app, the
research also addresses the communication security implemented between the gateway and the

Xiaomi cloud.

59

4.3.1. Mi Home App Analysis

Based on the designed research methodology, we approached the analysis from three different
sectors as we did for the Al Speakers. The first part addresses the security techniques implemented
in the app to protect user data saved on the smartphone storage. First, we performed static and
dynamic analysis on the app using Android reverse engineering approach. Then, we conducted
live forensics on the app installed on Samsung Galaxy Note 2 with Android version 4.4 (KitKat).
The smartphone is rooted for the research purpose, in the same way, we used for Al Speakers
Apps. Finally, we analyzed the app from network investigation perspectives using traffic analysis
through Wireshark and Man-in-the-Middle attack approach. In the following section, detailed
activities and findings of the analysis are presented.
4.3.1.1. Mi Home App Data Storage Analysis

For our analysis, the first activity we performed on the app was to perform static code analysis
after extracting the app using adb pull from the smartphone. After static analysis, we immediately
followed the dynamic analysis to determine how the files are accessed. Finally, at the third stage,
we used live forensics approaches using a combination of the Linux commands and adb
operations on the smartphone. For database analysis, we also used the sglite3 commands. Also,
for some of the files, we exported them to the local computer using the adb pull operation and
used tools such as SQLite DB browser and Notepad ++ editor.

First using the manual app reversing process, we extracted the dex files from the apk file and
converted them to jar files to analyze using java decompiling tools. After, reversing we found that,
the app has lots of native and third-party libraries integrated the app. Moreover, there are seven
dex files. From Figure 33, we can see that there are seven DEX files. These are the compiled java
source code files. Now converting these files to jar files is required to open and analyze the class
files as a java source code. To convert DEX files to jar file, we used the open source dex2jar

converter tool.

60

| | classes.dex 41772019 2:27 PM DEX File
| | classes2.dex 41772019 2:27 PM DEX File
| | classes3.dex 41772019 2:27 PM DEX File
| | classesd.dex 41772019 2:27 PM DEX File
| | classes5.dex 4/17/2019 2:27 PM DEX File
| | classesh.dex 4/17/2019 2:27 PM DEX File
|| classes7.dex 41772019 2:27 PM DEX File
| £ classes2-dexdjar.jar 4/17/201%9 2:42 PM Executable Jar File
| £ classes3-dexdjar.jar 41772019 2:42 PM Executable Jar File
| £ classesd-dexdjar.jar 4772019 2:44 PM Executable Jar File

| £ classes3-dexdjar.jar 41772019 2:44 PM Executable Jar File
| £ classesb-dex?jar.jar 4172019 2:45 PM Executable Jar File
| £ classesT-dex2jar.jar AA7/2019 2:45 PM Executable Jar File
| £ classes-dexdjar.jar 472019 2:41 P Executable Jar File

Figure 33: Mi Home app dex to jar converted files

In addition to the manual decompiling process, we also used an automated tool called Mobile
Security Framework (MobSF). The advantage of this automated tool is, the capability to parse
and report security issues in the apps after performing the decompiling process. The tool also
provides the option to download the decompiled jar files for further analysis. Moreover, the
browser can be used to view and analyze the java source codes. However, like the jadx-gui tool,
it has no linking capability to follow classes and methods in different files.

Similar to the Al speakers Apps case, since the goal is to determine how the apps save files and
what security techniques are used, we analyzed the source code related to SQL.ite database, shared
preference, internal and external storage operations.

The following section presents the findings in the app static analysis for each of the storage
options. For the code analysis, the first thing we did was to figure out how the app creates the
database and what security is implemented to protect user data in the SQL.ite databases.

From the source code, we were able to understand what database and tables the app creates.
Figure 34: shows the code snippet from the app used to create the SQL.ite database and its tables.

One of the databases created is called miio.db and has four tables.

61

public void onCreate(SQLiteDatabase sCLiteDatabase, ConnectionSource connectionSource) {

try{
createTablelfMotExists(connectionSource, MessageRecord.class);
createTablelffotExists(connectionSource, SharelserRecord.class);
createTablelfflotExists(connectionSource, FamilyRecord.class);
createTablelffotExists(connectionSource, GatewayLogRecord.class);

}catch (Throwable e) {
throw new RuntimeException(e);

public class MessageRecord

i
public static final String FIELD DEVICEMAME = "deviceName";

public static final String FIELD_ID = "id";

public static final String FIELD_MESSAGETYPE = "messageType";
public static final String FIELD_MSG_ID = "msgId";

public static final String FIELD_RECEIVE_TIME = "receiveTime";
public static final String FIELD_RESULT = “"result";

public static final String FIELD_SEND_USER_ID = "senderUserId”;
public static fimal String FIELD _USER_ID = “userId";

Figure 34: Mi Home app database creation code snippet

From the source code, we were able to understand what information the app saves in the
database. Message records shared user records, family records and gateway log records are saved
in the database as individual tables. For instance, the message record class, we can understand
that the app saves deviceName, message type, receive time and senderuserID. The other database
file in the app’s database is logdb. The geofencing database is used to store location information
for Xiaomi push service. In all of the above databases, there is no security consideration for data
saved in the tables, except the scope of the databases is MODE_PRIVATE.

Besides, to the static analysis on the source code, we also tried the dynamic analysis using
Inspeckage. Figure 35 shows Inspeckage analysis result. However, since the app keeps crashing

before the sign in process is done. As a result, we could not proceed with dynamic analysis.

62

L3 C ® Notsecure | 192.168.166.10:8008

= sower- QIEER oo

MiH UID: 10329 | Debuggable: false Package: com Xiaomi.smarthome
l i Home [EXET} GIDs: 3003-1028-1015-3002-3001 Data di fdataldatalcom xiaomi smarthome | Tree Vew
Allow Backup: true
Package Information Shared Preferences @) Seralization @@ Crpto @@ Hash soLte@E) HTTPEED Filesysem@ wisc @EB) webview @) PC@Z) +Hooks
Exported Activities P Start Activity Requested Permissions
com.xiaomi.smarthome.wxapi WWXE niryActivity android permission.INTERNET
com.xiaomi.smarthome.wxapi WWXPayEniryActivity android permission.READ_PHONE_STATE
com.xiaomi.smarthome.scene SmartHomelauncherActivity android permission. ACCESS_NETWORK_STATE

Figure 35: Mi Home app Inspeckage output showing the app name with intercebted activities

From the above analysis, it is quite imperative to understand what information the app is saving
and what kind of tables it creates. However, there are no data security considerations, except the
databases, are created in the private storage with the default MODE_PRIVATE attribute applied.
To verify this, we used the MobSF tool to analyze the applied securities. The tool complained
that the app does not use encryption methods to secure the databases. On the analysis, we learned
that there are many other database libraries. However, since we were interested in the way the
smart home app is handling the databases, we selected only four of them. Among the selected
four, shown in figure 36, the device record class is more specific to the smart home device. As a
result, we opened the class file and analyzed it. The result shows that the database saves
smartphone information, including the location and owner’s name.

App uses SQLite Database and execute raw SQL query. Untrusted user input in raw SQL queries can
cause SQL Injection. Also sensitive information should be encrypted and written to the database.

com'\xiaomi\smarthome\core\server\internal\device\DeviceRecord.java
com'xiaomi\smarthome\download\DownloadProvider.java
com\xiaomi\smarthome\library\common\util\CommaonUtils.java
com'\xiaomi\smarthome\miio\camera\cloudstorage\CloudVideoDownload DBManager.java

Figure 36: Mi Home app databases handler class files from MobSF security analysis report

In addition to the app analysis, we also did live forensics analysis to understand how the app
stores the data in the databases. To perform the analysis, we used the sglite3 command tool. After

connecting the smartphone to the research computer, we get access to the device through the adb

63

and shell commands. Once we navigated to the apps private storage
/data/data/com.xiaomi.smarthome/databases/, we used the sglite3 tool to load the schema of the
database and investigate the tables and their corresponding data. Figure 37 shows the commands

executed and the results as shown on the terminal.

o.db
db.db—journal
db

db—journal
db

.db
.db-journal
num3.db

Figure 37: Mi Home app database files, showing the commands and list of the databases in Xiaomi app

From the live analysis, we learned that there are six databases. Out of the six database files,
miio.db and miio2.db are structurally similar except miio2.db has the current data while the

former is empty.

root@tOltelgt:/data/data/com.xiaomi.smarthome/databases # sqlite3 miio2.db
SQL.ite version 3.7.6.3-Titanium

Enter ".help" for instructions

Enter SQL statements terminated with a ";"
sglite> .dump

INSERT INTO "devicerecord
VALUES('90:9F:33:DB:10:DE',1,0,",",NULL,'80943756',NULL,'{"isSetPincode":0,"fw_vers
ion":"1.4.1_149" "needVerifyCode":0,"isPasswordEncrypt":0,"mcu_version™:"0143","is_fact
ory™false}',13,1,0.0,'192.168.166.44',1,0.0,'78:11:DC:E1:6D:0B',NULL, 'lumi.gateway.v3','M
i Control Hub',NULL,NULL,",",16,0,NULL,0,-44,1,'neo_house6',",'1815102308',NULL);
INSERT INTO "devicerecord" VALUES('90:9F:33:DB:10:DE',1,0,'Close ','%s
Close','[1555598167]','lumi.158d0002164347','{"event.close":"{\"timestamp\":1555598167,\"
value\":[]}","event.iam™:"{\"timestamp\":1525182169,\"value\":[]}","event.no_close":"{\"tim
estamp\":1553875303,\"value\":[60]}","event.open™:"{\"timestamp\":1555598166,\"value\":[]
}""prop.close™:"1","prop.fw_ver":"10","prop.lqi":"97","prop.no_close":"0","prop.open”:"0",
"prop.status™:"close"}','{"isSetPincode™:0,"fw_version":"10","needVerifyCode":0,"isPasswor

64

dEncrypt":0,"is_factory":false}',14,1,0.0,",2,0.0,",NULL,'lumi.sensor_magnet.v2','Door',NUL
L,NULL,'80943756','lumi.gateway.v3',16,3,NULL,0,0,0,'neo_house6',",'1815102308',NULL;

Listing 8: Live Analysis of miio.db file using the sqglite3 command

The result from the live forensic analysis shows that, the miio2.db database and the created table
have the current values for the information specified in the source code. More importantly, as the
investigations show, there is no encryption applied to the data.

We also conducted an offline analysis of the database. After extracting the miio2.db file using
the adb pull operation, we analyzed it using the open source DB Browser for SQL.ite tool. Figure

38 shows the result with the current data on the table.

Database Structure Browse Data Edit Pragmas Execute SQL

Table: | | devicerecord w @ & '\ LE_:] New Record,| | Delete Record
bssid version userld desc deschew descTimelString did eventInfo extralnfo
Filter [Fi.. [ritter Filter Fiter [Fitt=r [Fitter [Fitter [Fitter [Fitter

1 1815102308 Alarming Off ... 80043756 {"needVerifyC...
2 .QD:QF:BB:DS:..‘ 1815102308 Open %s Open [1540827763] lumi.158d000... {"prop.close":... {"needVerifyC...
3 90:9F:33:05:.. 1815102308 Motion detected %s Motion de... [1539489538] lumi.158d000... {"event.iam":.. {"needVerifyC...
4 90:9F:33:D5:.., 1815102308 Single click %s Single click [1540830585] lumi.158d000... {"prop.lgi":"1l... {"needVerifyC...

Figure 38: Mi Home app miio2.db file analysis result using SQLite DB browser

In addition to miio2.db, we also analyzed the other database files to find out the implemented
security. The geofencing.db is used to save the location of the smartphone. The logdb.db file saves
the log file for the phone. The mistat.db stores the statistic information for app usage. The
phone_number3.db file saves the user phone numbers. However, no encryption method is applied
to each of them.

Next, to the databases, the other data source we investigated was shared preference. In the
source code analysis, we learned that the app creates multiple XML files to save user and app
related information in a key-value format. Among them, we suspected that some of them (for
instance, com.xiaomi.smarthome_preferences.xml and
com.xiaomi.smarthome.globaldynamicsetting.xml) are directly related to the smart home app.

Figure 39: shows code snipcom.xiaomi.smarthome_preferences.xml file. The app uses the file to

65

store, the server, WLAN information, port number, and used protocol. However, the access
security of the file is dependent on the devices Build SDK version. As shown in figure 39 below,

the file is created in MODE_PRIVATE mode if the SDK versions are below 4.

private woid setDefaultValues()
i
imt 1
int J

= Integer.parselInt({Build.VERSION.SDK) ;
if (i >
4

a;
11) {

i=4a;
} else {
i = @;
H
settings = getSharedPreferences("com.xiaomi.smarthome_preferences", i);

i=3;
Object localObjectl;
while (i < 1)
i
if (i != @)
<
localObjectl = new StringBuilder();
(({stringBuilder)localObjectl).append(™"};
(({StringBuilder)localObjectl).append{i);
localObjectl = ((5tringBuilder)locallbjectl).toString();
¥

Figure 39: Mi Home app shared preference manager code snippet

The other file we analyzed in the shared preference was the deviceld.xml file. This file is created
with an explicit setting of the MODE_PRIVATE. It is used to save device ID, and it saves the
value in a hashed format. For the analyzed files, we learned that other than the MODE_PRIVATE,
the app does not apply any encryption algorithms to protect information saved on the storage.

Next, we tried to analyze the same file using the dynamic analysis tool (Inspeckage) to
determine how the app writes user information in the XML files. However, as stated above, since
the app keeps crashing on the Android KitKat version, we could not proceed with this analysis.

The other data storages used by the app are internal and external memory. Analyzing the
AndroidManifest file indicates that the app writes to external storage. Moreover, using the MobSF
tool, we learned that the app saves user data without any security considerations. Figure 40 shows
the security analysis report from the MobSF tool. During our analysis, we find log data saved on
the external storage under the app’s name.

android.permission.WRITE_EXTERNAL_STORAGE read/modify/delete Allows an application to write to the SD card.

SD card contents

android.permission.READ_EXTERNAL_STORAGE read SD card Allows an application to read from SD Card.

contents

Figure 40: Mi Home app external storage permissions in the Androidmanifest file

66

4.3.1.2. Mi Home App Network Investigation

The other security point of view we analyzed the app was, the implemented network security
between the app and the Xiaomi cloud. To perform the investigation, we used two approaches
specified in the above research methodology section. The first approach was capturing network
traffic using Wireshark. From the analysis, we understood that the app uses TLSv1.2 to encrypt

the communication channel.

47.74.174.229 192.168.137.228 TL5vl.2 888 Application Data
47.74.174.229 192.168.137.228 TLSvl.2 564 Application Data
192.168.137.228 47.74.174.229 TLSv1.2 las Application Data
192.168.137.228 47.74.174.229 TLSw1.2 318 Application Data

Figure 41: Communication security between Mi Home App and Xiaomi cloud

On the other hand, the Mi Home app sends device status information without any protection.
The data includes the smartphone device version and the installed Mi Home app version.

The second approach was using the MITM attack. From the source code analysis using the
manual and automated analysis, we could not learn how the app handles third-party certificates,
in different web activities except for Facebook web activity call. For the Facebook web activity
call, in case of SSL error, the app is forced to cancel requests using the sslError.cancel() function.

Then, to conduct the attack, since the app could not run on the Android KitKat version, we used
SandroProxy tool a Samsung Galaxy with Android version 6. Using this method, we were able to
extract some of the communication APIs and the bearer token used for authorization of the API
requests. However, the APIs are limited to the account and stats information of the app. Since the
app detects the Sandro proxy, accessing user data was not possible. Therefore, this method did
not reveal the APIs used to fetch data. Thus, to reveal the APIs, we used manual code injection.

The manual code injection is done through reverse engineering the app, and manually
modifying the code by injecting a piece of code that logs and forward the results to the terminal.
After inserting the code, compiling and signing the apk file using self-generated Certificate is

required in the process to generate the apk file. Next, to installing the modified apk file and

67

performing the app supported functionalities, we were able to capture the API calls and the access

tokens the APIs used. ADB logcat tool was used to capture the requests.

RequestfBuilder-url: https://us.api.io.mi.com/app/scene/list
MetRequest method?: POST
MNetRequest path?: /scene/list

Request$Builder-header:
RequestfBuilder-header:
RequestfBuilder-header:
RequestfBuilder-header:
RequestfBuilder-header:
RequestfBuilder-header:
Request$Builder-header:
Request$Builder-header:
RequestfBuilder-header:
RequestfBuilder-header:
Request$Builder-header:
RequestfBuilder-header:
RequestfBuilder-header:
RequestfBuilder-header:

Content-Type
application/x-wwni-form-urlencoded
Content-Length

197

Host

us.api.io.mi.com

Connection

Keep-Alive

Accept-Encoding

gzip

Cookie

userId=1815182383; 5erviceTuken=58ET2
User-Agent

okhttp/3.4.1

Figure 42: ADB logcat output for Xiaomi Mi Home App communication showing API and the header

As we can see from Figure 42, the service token is sent as a cookie with other information. The

token value looks like:

serviceToken=508T2PH9901SleqCig7xQjt0Td1nRSbQK91tPUdhldeYEQn1+jO8HO
cOT3xkaTn60DfxY20Si/ezCtNgh/sdJQP1AR7zBG1Yw8n1uHfH4IApC/jvh2heig+h56iW
iu+gPrd8XMO3ID9gTS2TPEGIOsfL+mvfL4loEatSdiNmiak=

After constructing the header and the cookie values, we sent a request to the cloud using the
extracted API; however, we got an error message that states the connection was unauthorized,
with HTTP error code 401. From the error, we believe that the service token was used for a single
session. After that subsequent request has to use new tokens to access data from the cloud. As a
result, in our research, we could not access Xiaomi cloud data using the methods we used to access
user data from other devices’ cloud.

4.3.2. Xiaomi Lumi-gateway Network Investigation
In this research, we investigated the implemented communication security method in the

gateway by intercepting the traffic between the I0T devices and the backend cloud using the

68

Wireshark traffic analyzer. During the setup, for the initial connections, Xiaomi Lumi gateway
uses the TCP protocol; however, once the setup is done, all the communication between the device
and the cloud is over UDP. The gateway uses proprietary security over UDP to exchange data
with the cloud. In addition to cloud communication, the device continually sends broadcast

information to the network over the UDP protocol.

73871 2019-84-18 23:59:55.642408 lumi-gateway-v3_miio80943756.local sg.ott.io.mi.com uopP 586 54321 + 8053 Len=544
73878 20819-84-18 23:59:57.635851 lumi-gateway-v3_miios8@943756.1local sg.ott.io.mi.com UDP 586 54321 -+ 8853 Len=544
73883 2019-84-18 23:59:59.629821 lumi-gateway-v3_miio8@943756.1local sg.ott.io.mi.com uoP 586 54321 -+ 8853 Len=544
73889 2019-84-19 86:08:81.624812 lumi-gateway-v3_miio8@8943756.1ocal sg.ott.io.mi.com uDP 586 54321 -+ 8853 Len=544
732490 2019-84-19 02:00:408.865263 lumi-gateway-v3_miio8@943756.1local sg.ott.io.mi.com upp 586 54321 -+ 8853 Len=544
73759 7019-A4-19 A0:AA:47 . ASR1AD Tumi -patewav-u3 miinARA43754. lacal ss.att.io.mi.cam une SAA 54371 » AAS3 | en=544
Frame 73883: 586 bytes on wire (4688 bits), 586 bytes captured (4688 b 28 16 d8 61 cc 42 78 11 dc el 6d @b €8 BB 45 88 aBx --m - E
Ethernet II, Src: lumi-gateway-v3_miio88943756.local (78:11:dc:el:6d:el 82 3c 23 cd @@ 8@ ff 11 3c f9 cé a3 89 f4 2f 58 < < JX
Internet Protocol Version 4, Src: lumi-gateway-v3_miioB8943756.local (1| @920 de f5 d4 EH 1f 75 B2 23 19 Gm fal 3l R o G WL -
' User Datagram Protocol, Src Port: 54321, Dst Port: 3853 Sgig b :g 2‘3'. :_i :; :; gs E: :f: :5 ;‘: :3 :z EE‘ ;: :c
Seurce Fort: 54321 CCCMlos of bl 4b 13 4a be @3 78 a5 52 ac 56 83 fa 2|
Destination Port: 8853 UL M7 41 d3 92 62 7f 4c 32 39 2e f@ da 2b 56 b6 7§
Length: 552 Ep-Bl1d al 3a e@ b8 6b f7 54 c9 a@ 2c 41 3d 4a 58 53
Checksum: @x1968 [unverified] LR MG ec 73 34 62 @f 24 7e 3@ 7d a4 ed b9 d1 1f 19
[Checksum Status: Unverified] o002 35 c8 34 97 e8 8e ce 4f @6 e3 2c fl ®a 58 6q
[Stream index: 236] fll=* 25 T5 71 01 8 1f 82 e7 b 98 Se 2e 3a a9 dg
[Timestamps] Sgbg %b bb of 73 2; es5 f? S: :1 Z: 5d iftf‘ :? 45 A;lt]; .bc
" Data (544 bytes) phglc! o1 c4 c2 eb ad 8c 32 fc db 77 2b b9 a3 3b e
::[:lc4 64 bl c9 8f e3 2b al ad 28 e4 ab 26 5e 99 3d|
Data: 2131822880080080884d31a8c5cb898ebbe6bbSb3chde7bes.. e e e
[Length: S544] CEIEMNG> 61 61 a9 @6 d@ b2 43 ae 3b 1f d7 8f 25 da 4dillbza----C -;---%-
a1an PR 2o coog oo do Br o af co g1 == X

Figure 43: Network traffic between Xiaomi Lumi gateway and cloud showing the encrypted data over UDP

4.3.3. Results Analysis

From the Xiaomi Smart home Kit analysis, we learned that the Mi Home app uses extensive
libraries and includes third-party libraries. As a result, in the apps data storage, lots of files and
databases are created that are not necessarily required to the smart home app. Besides, in all of
the related files, except the MODE_PRIVATE isolation security, there are no implemented crypto
security techniques to protect user data. On the other hand, the app uses TLSv1.2 to protect
communication between the app and the cloud. One of the security features on the app is the
ability to detect MITM attack for response data. Using the Burp Suite tool, we were able to capture
some request APIs; however, they do not fetch user data. Furthermore, after manually injecting
log code into the source code and recompiled it, we used the adb logcat to recover more APIs and
parameter values. However, since the APIs are authorized using one-time session tokens, we
could not fetch user data from the cloud. After constructing the APIs and required header and

parameter values, we used the Python request library to perform user data requests from the cloud.

69

However, the responses to our requests were Unauthorized request with HTTP status code 401.
Besides, the gateway device uses the TCP protocol to establish an initial connection. Once the
setup is done, the gateway uses a proprietary security protocol to protect user data sent over UDP.

Also, the device sends of UDP broadcast to the network with a defined size of UDP packets.

4.4. Sen.se Mother

Sen.se Mother is a smart sensor used to measure movement, temperature and other
environmental conditions [71]. The Mother collects data using its sensors (called Cookies) and
notifies the state of the sensors to the users, and other IoT devices (currently, only Google’s NEST)
through IFTTT (If This Then That) cloud service. IFTTT is a cloud service that enables
intercommunication between apps and devices [72].

Sen.se Mother contains two hardware devices, the Mother hub and motion sensors (Cookies).
The Mother acts as a hub to connect the Cookies using radio frequencies of 868MHz in Europe
and 915MHz in North America and Asia. The Mother is connected to the Internet using a standard
RJ45-terminated ethernet cable. An Internet connection allows communication between the
Cookies, Mother hub, cloud service, and the user. Cookies are multipurpose sensors [73]. They
can be configured for applications, such as sensing object movements, measuring temperature,
walking, presence, sleep monitoring, etc. Also, a single cookie can be set to serve at least two
different purposes simultaneously depending on the context of the application. For example, a
cookie monitoring door movement can also be configured to monitor the room temperature.
Cookies can save data on the individual sensor for up to ten days. Sen.se Mother setup architecture
is depicted in figure 44.

The Sen.se Mother hub and the Cookies can be monitored using a smartphone application called

Sen.se Pocket Mother. The Sen.se Pocket Mother app is available for iOS, Android and Windows

70

phones. In addition to the smartphone app, web browsers can also be used to interact with Sen.se

Mother cloud service.

0
1
°
®

Motion Cookie

1§ .

9 LI“ ‘ ofi- N
3 TR
¢ \ Ji __’a

Motion Cookie 1

Monitoring Clients
9 ——
: Gateway oA

Motion Cookie

0
Y
o
@

Motion Cookie

Figure 44: Sen.se Mother set up architecture with Sen.se cloud

For Sen.se Mother 10T device and ecosystem analysis, the research approach is different from
the rest of the researched case study devices. The main reason, behind changing the analysis
approach is, at the time of conducting this thesis research, the device is out of operation due to
the company’s lack of support. We believe that the company has run out of business. As a result,
the device cannot connect to the cloud, and we were not also able to connect to the cloud from
both the companion app and browser clients. As a result, for this research, we were forced to use
the previously collected data and analysis results, which was conducted in 2017/2018.

Regarding the security of the device, during our research, we found a number of vulnerabilities
on the companion app, the cloud and the network between the device. Moreover, during that
period, we tried to report the findings to the company; however, the company did not respond at
all. Apparently, the company run out of business and the cloud became unavailable. Therefore,
for this research, we included the forensics analysis paper that was submitted to the Journal of
Digital Investigation; however, got rejected due to the unavailability of the company.

In addition to the forensics analysis paper, we included the vulnerabilities we reported to the

company and MITRE. Instead of including the whole documents in this thesis, we provided a

71

summary of the results, and the links to the complete google docs will be provided based on
requests to the authors. Requests can be done to the following documents.
1. Sen.se Mother Forensic Analysis document

2. Sen.se Mother Vulnerability Assessment and PoC document

4.4.1. Pocket Mother App Analysis

Based on the designed research methodology, we approached the analysis from three different
sectors as we did for the Al Speakers. The first part addresses the security techniques implemented
in the app to protect user data saved on the smartphone storage. First, we performed static and
dynamic analysis on the app using Android reverse engineering approach. Then, we conducted
live forensics on the app installed on Samsung Galaxy Note 2 with Android version 4.4 (KitKat).
The smartphone is rooted for the research purpose, in the same way, we used for Al Speakers
Apps. Finally, we analyzed the app from network investigation perspectives using traffic analysis
through Wireshark and Man-in-the-Middle attack approach. In the following section, detailed
activities and findings of the analysis are presented.
4.4.1.1. Pocket Mother App Reverse Engineering

For our analysis, the first activity we performed on the app was to perform static code analysis
after extracting the app using adb pull from the smartphone. After static analysis, we immediately
followed the dynamic analysis to determine how the files are accessed.

First using the manual app reversing process, we extracted the dex files from the apk file and
converted them to jar files to analyze using java decompiling tools. After, reversing, we found
that the app has lots of native and third-party libraries integrated the app. Moreover, there are
seven dex files. From figure 34, we can see that there are seven DEX files. These are the compiled
java source code files. Now converting these files to jar files is required to open and analyze the
class files as a java source code. To convert DEX files to a jar file, we used the open source

dex2jar converter tool.

72

In addition to the manual decompiling process, we also used an automated tool called Mobile
Security Framework (MobSF). The advantage of this automated tool is, the capability to parse
and report security issues in the apps after performing the decompiling process. The tool also
provides the option to download the decompiled jar files for further analysis. Moreover, the
browser can be used to view and analyze the java source codes. However, like the jadx-gui tool,
it has no linking capability to follow classes and methods in different files.

Similar to the Al speakers Apps case, since the goal is to determine how the apps save files and
what security techniques are used, we analyzed the source code related to SQL ite database, shared
preference, internal and external storage operations.

The following section presents the findings in the app static analysis for each of the storage
options. For the code analysis, the first thing we did was to figure out how the app creates the
database and what security is implemented to protect user data in the SQL.ite databases.

From the source code, we understood that the app creates databases only for the google analytics
purpose. Since there are no databases for user data, we did not proceed with the analysis of the
databases. However, from the code analysis on the shared preference files, we figured out that the
app saves passwords as plain text in a string format. Figure 45 shows the code snippet from the

app static analysis. The code indicates that username and password are saved without any security.

73

public final class d {
public static String a(Context context) {
return F getD:

getString((PREF_LOGIN®,),

public static void a(Context context, Otject ab]) {

Editor edit = P getD edit();
edit putString{"PREF_BOARD", new Gson().toJson(obj));
edit.commit();

public static void aiContext context, String str) {
Editor edit = P getD edit();
edit putString("PREF_LOGIN', str);
edit.commit();

public static void aiContext context, SenseUser senseUser) {
Editor edit = getD edit();
edit putString{"PREF_USER", new Gson() toJson((0bject) senseUsen);

edit.commit();

public static Siring b(Context context)

return gelD

public static void biContext context, String sir) {
Editor edit=F getD:
edit putstring(PREF_PASSWORD'", str
editcommit();

).edit);

public static Senselser c(Context context) {

} == null ? null : (SenseUser) new Gson().fomJsen(F

gelint"PREF_BACKEND", 0) == 1 ? "https /imike.sen se/|

htps: en.sel

getD

return F gelD

public static Siring d({Context context)

return P getD qetString("PREF_BADGE_DATE", ™);

public static SectionBoardAndBoard] el Context context) {
return getD:

0

) == null 7 null

1) new Gson().from

getString(PREF_USER", 7), SenselUser.class),

getD), SectionBoardAndBoard] class);

getString("PREF_BOARD'

Figure 45: Pocket Mother app shared preference file code snippet

From the source code, in addition to the user credentials, we were able to acquire embedded

URLs. Using those embedded URLSs, we sent requests to the cloud. The responses also showed

us that the server was vulnerable to further attacks. On the other hand, the app did not use any

external memory to write data.

4.4.1.2. Pocket Mother App Network and Cloud Investigation

The other security point of view we analyzed the app was, the implemented network security

between the app and the Sen.se Mother cloud.

To perform the investigation, we used two

approaches specified in the above research methodology section. The first approach was capturing

network traffic using Wireshark. From the analysis, we understood that the app uses TLSv1.2 to

encrypt the communication channel.

app-82.sen.se
192.168.1.97
app-82.sen.se
192.168.1.97

192.168.1.97
app-88.sen.se
192.168.1.97
app-B2.s5en.se

TLSw1.2 389 Application Data
TL5w1.2 64 Application Data
TLSw1.2 396 Application Data
TL5v1.2 988 Application Data

Figure 46: Communication security between Pocket Mother app and Sen.se Mother cloud

74

The second approach was using the MITM attack. From the man-in-middle attack, shown in

figure 47, we intercepted the plain user credentials, and the APIs requested to the cloud.

28 .. g POST .., v 4o v .

279 [htips:/ipocketmother.sen.se POST fpocketmotheriogin/ v v 1769.151.24

280 1 POST - - v v o -

81 o A POST v

8 1 GET e e P v v -
283 htipsi... .. GET i M . v
e v

Request
Raw | Params | Headers | Hex

FOST /pocketuother/Llogin/ ETTR/L. L
Content-Type: application/x-wiw-forn—urlencoded
Content-Length: 44

%/1.6.0 (Linux; U; kndroid 4.4.7; SHV-EZ50L Build/KOT4SH)

Figure 47: Pocket Mother app man-in-the-middle attack

4.4.2. Sen.Se Mother Network Investigation

The communication between the mother hub and the sen.se cloud is using the WebSocket
protocol. The mother initiates a connection to that server. During the session initiation, it sends
get request with its information and its MAC or Serial number as an authentication method. But
the whole communication is in plain text. And after the session connection is finished cookies
data between the mother hub and the Sen.se cloud is sent as a plain text in JSON format. The data
contains the method (POST) and Cookie Serial, feed type (the configured application), the value

of the current event to be reported or updated and the timestamp of the event off which the data

IS sent.
34 38.886460 144.76.166.244 192.168.165.5 TCP 68 B0 + 1468 [ACK] 5eg=16 Ack=1979 Win=41888 Len=0
35 96.821213 192.168.165.5 144.76.166.244 TCP 227 1468 » 8@ [PSH, ACK] 5eq=1979 Ack=16 Win=3880 Len=173 [TCP segment of a reassembled PDU]
36 96.3@7678 144.76.166.244 192.168.165.5 TCP 68 80 + 1468 [ACK] 5eq=16 Ack=2152 Win=41888 Len=0
37 103.831277 144.76.166.244 192.168.165.5 TCP 6@ 8@ + 1468 [PSH, ACK] Seq=16 Ack=2152 Win=41888 Len=3
38 183.833255 192.168.165.5 144.76.166.244 TCP 68 1468 + 88 [ACK] 5eq=2152 Ack=19 Win=380@ Len=8

Checksum: @xa643 [unverified]
[Checksum Status: Unverified]
Urgent pointer: @

[SEQ/ACK analysis]

TCP payload (173 bytes)

TCP segment data (173 bytes)

98 9f 33 d5 32 86 98 9f 33 db 1@ df B3 @8 45 ee
8@ d5 19 90 8@ @2 63 @6 @@ ad c@ ad a5 @5 9@ 4c
2 a6 T4 85 bc @@ 58 5f 25 79 ad 78 1b c4 bc 58 18
0038 b8 as 43 2o 88 B0 8e

0048
2050
0060
0078
0080 3
0090 [N

00ad
8ebe
B8ce
eade
00ed

Figure 48: Network traffic analysis between mother and Sen.se cloud

75

4.4.3. Results Analysis

From the Sen.se Mother analysis, we learned that the Pocket Mother app saves user credentials
as a plain text in the shared preference storage. Besides, in all of the related files, except the
MODE_PRIVATE isolation security, there are no implemented crypto security techniques to
protect user data on the app’s storage. On the other hand, the app uses TLSv1.2 to protect
communication between the app and the cloud. However, the app is vulnerable to a MITM attack.
Using the Burp Suite tool, we were able to capture user credentials in plain text and some request
APIs. Furthermore, using the DevTools on the browser, we were able to extract all the APIs and
the cookies. However, some of the APIs use a one-time session in which we were not able to
extract data from the cloud. On the other hand, some of the APIs do not require any credentials
such as cookies to extract the data from the cloud. Similarly, the communication between the
Mother hub and the cloud is not protected using security methods such as TLS. From this

vulnerability, we were able to extract the plain text between the cloud and the mother hub.

4.5. Summary

In this chapter, we presented the analysis on four smart home loT devices data protection
techniques implemented in the Android type of their companion apps, communication security
between the devices and the backend cloud, and between the companion apps and the backend
cloud. We used Smartphone forensics; Android apps reverse engineering and network traffic
interception techniques to conduct the research. Based on the analysis, we were able to acquire
artefacts from smartphones and network investigations without significant security challenges.

Moreover, using those artefacts, we acquired user data from the cloud for three of the devices.

76

CHAPTER 5. RESULTS DISCUSSION

In this research, we performed a security assessment on the smart home I0T ecosystem to
identify the data protection mechanism implemented to protect user data in apps storage and API
security methods. We also studied how the security methods affect data acquisition process for
digital forensics investigation. In this chapter, we presented an analysis of the results and how
those security assessments results are used to acquire data from the app or the cloud.

More importantly, the goal of the research was to assess how loT developers consider
cybersecurity for 10T devices and their ecosystem. For the research, the main drive was that 10T
developers do not consider cybersecurity solutions comprehensively during the development life
cycle of 10T devices and their ecosystem, which can be used for digital forensics investigation
purpose in solving crimes that directly or indirectly involve smart home loT device. This lack of
comprehensiveness of security consideration has a double impact on 10T users. From the hacker’s
perspective, the impact could be devastating in affecting the overall way of life of the users. On
the other hand, from a law enforcement point of view, those security weaknesses can be used to
support hypothesis either in favor of the owner or against the owner depending on the cases.

To address the research, we formulated a series of questions that are directed towards addressing
the general goal of the research, which is identifying how data protection security techniques
implemented in 10T devices affect the digital forensics investigation process. The questions are
stated in the thesis statement section stated in the introduction section of this paper. As a review,
we stated the questions in this section too and presented the discussion of the results to answer
the questions.

The thesis aimed to identify the current state of the selected smart home 10T devices applications

security implementation from digital forensic investigations point of view. To address this, the

77

research questions stated in section 1.3 were formulated. In the following section, we presented

an analysis of the results to answer the stated questions.
5.1. Companion Apps Data Storage Security

Companion apps are interfaces to loT devices device and user data management. User
information used for registering the device and cached cloud data is stored on these companion
apps. As a result, this information should be protected from malicious operations. Using the
default private access mode and implementing data encryption technologies are recommended to
protect these data.

From our investigation of SKT Nugu Al Speaker and the companion security, we learned that
there is a number of security vulnerabilities that can be used for the benefit of a digital forensic
investigation. From the apps, lack of data storage security enabled us to access the tokens, TIDs
and device IDS that can be used to login to the cloud and acquire user data through the APIs
extracted using the MITM attack. Specifically, the analysis of the shared preference files revealed
all the login credentials for the API authorization to acquire user data from SKT cloud. However,
the data on the SQL.ite database was not valuable in our data acquisition process.

Similarly, Clova Al Speaker and its companion app data security, we learned that there is a
number of security vulnerabilities that can be used for the benefit of a digital forensic investigation.
From the apps, lack of data storage security enabled us to access the data from the database, which
can be considered as user history log. On the other hand, the analysis of the shared preference
files revealed that the app uses encryption to secure information saved on the clova.xml file.
However, from the other file (clovatoken.xml), even though we were able to identify the token
information, it was not useful to acquire user data from the cloud.

From the Xiaomi Smart home Kit analysis, we learned that the Mi Home app uses extensive

libraries and includes third-party libraries. As a result, in the apps data storage, a number of

78

databases are created that are not necessarily required to the smart home app. Besides, in all of
the related files, except the MODE_PRIVATE isolation security, there are no implemented
encryption-based securities to protect user data. As a result, from the databases, we were able to
acquire user data and log history for the sensors.

On the other hand, from Sen.se Mother, we were able to acquire the plain text of the username
and password used for registering the device in the shared preference storage. In addition to the
login credentials, we were able to recover the cloud APIs used between the Pocket Mother app
and the Sen.se cloud. Figure 5 presents a summary of the implemented storage security methods

to protect user data in each companion apps.

Table 5: Summary of the companion apps data storage security implementation

Companion = App 10T Device Implemented Security
App hame = Version name SQL.ite DBs Shared Prefs Internal External
Pocket 1.1.0 Sen.se Default private Default private Default private No external
Mother - Mother No encryption No encryption No encryption storage
Nozzle Naver Default private Defa}ult private Default private .
2.13.0 : Partial . No Security
Clova Clova No encryption . No encryption
encryption
Nugu Default private = Default private Default private .
Aladdin 2.3.0 SKT Nugu No encryption No encryption No encryption No security
Xiaomi . . .
Mi Home 550 Smart Default prl_/ate Default prl_/ate Default prl_/ate No security
Home No encryption No encryption No encryption

5.2. Communication between Companion Apps and the Cloud

The companion Apps are client-side applications available for users to set up, configure and
manage loT devices, and access data stored on the cloud. RESTful APIs are used to communicate
between the companion apps and the cloud. Since the apps and the cloud exchange user data, the
confidentiality and integrity of the data should be guaranteed. Security protocols such as SSL/TLS
are recommended to protect user data. TLS version 1.2 and the latest release version 1.3 are the
recommended security protocols. However, loT applications developers are still hesitating to
consider it seriously. In this section, we presented our survey on the selected IoT devices to

identify the implemented communication security. We used the Wireshark network analyzer to

79

capture and analyze the traffic between each cloud and the companion smartphone apps. Table 6

presents a summary of the results and identified the main security weakness for each app.

Table 6: Summary of communication security between loT companion Apps and cloud

D Companion App 10T Device Impleme?nted Remarks
App name | Version name Security

1 | Pocket 1.1.0 Sen.se TLSv1.2 Vulnerable to MITM attack due to third-party
Mother Mother certificate acceptance

2 Nozzle 2.13.0 Naver Clova = TLSv1.2 Vulnerable to MITM attack due to third-party

certificate acceptance

3 Nugu/ 2.3.0 SKT Nugu TLSv1.0 Vulnerable to MITM attack due to third-party
Aladdin certificate acceptance and other SSL attacks

4 MiHome 55.0 Xiaomi Smart = TLSv1.2 Partially Vulnerable to MITM attack due to

Home Kit third-party certificate acceptance

During our investigation of the communication security between the Apps and the cloud for the
above case studied devices, we identified that all use SSL/TLS protocol to protect the
confidentiality and integrity of the data. However, SKT Nugu app uses TLSv1.0 which is on the
verge of depreciating and vulnerable old SSL attacks [74], [75]. Moreover, in all of the above
implementations, there is a vulnerability that can be exploited to undermine security. The sslError
handling mechanism creates vulnerability in allowing communication to proceed using third-
party certificates if not handled to properly [76]. In the case of Pocket Mother, Nugu and Clova
due to the certificate error handling mechanism, the apps are vulnerable to MITM attacks. Using
Burp Suite proxy tool, we were able to intercept the APIs, the tokens, cookies and other user
information. In the case of specific to Pocket Mother, we were able to obtain also the username
and password used for registering the device. For Mi Home, we intercepted some APIs using
Sandroproxy, however, the APIs were not used to fetch user data on the cloud. On the other hand,
we used manual code injection to extract some APIs used to fetch user data, however, due to the
one-time session tokens used for authorizing the APIs, we were not able to acquire user data.

Moreover, from the investigation, we learned that the Naver Clova app sends crash analytics
data without any security. The data includes the main class, the root status of the phone, the

network state and the IP address assigned to the phone.

80

5.3. Communication between 10T Devices/Hub and the Cloud

loT devices depend on a number of protocols to communicate with backend Clouds. Some use
proprietary while some use open protocols. It is common to find protocols such as CoAP [77],
MQTT [78], 6LowPAN [79] and other protocols such as HTTP in multipurpose sensor based loT
devices. However, in all cases, the underlying requirement is the confidentiality and integrity of
user data during communication with the cloud.

In this research, we investigated the implemented communication security methods in the
selected 0T devices by intercepting the traffic between the 10T devices and the backend cloud
using the Wireshark traffic analyzer. Similar to the App, SKT Nugu uses TLSv1.0 between the
speaker device and the SKT cloud. Moreover, it pushes firmware updates to the device as a
plaintext. A checksum is the only security applied to verify the integrity of the firmware. From
the captured unencrypted firmware, we were able to get the update package information, including
the version. This kind of vulnerability may lead to control the device by replacing the firmware
with backdoored firmware. [68] demonstrated Xiaomi smart home gateway hack using the

unencrypted firmware update process.

Table 7: Summary of communication security between loT devices and the cloud
Device/hub Type of

ID . Transport Security Remarks
name Application
1 Sen.se Mother Multipurpose Sensor None
2 Naver Clova Al Speaker TLSv1.2
3 SKT Nugu Al Speaker TLSv1.0 Unencrypted firmware
update
4 Xiaomi Smart Multipurpose Sensor Proprietary security

Home Kit over UDP

5.4. 10T Cloud APIs Security Investigation

Most of the APIs we analyzed are unofficial APIs extracted through the App reversing and
network analysis using a Man-In-The-Middle attack on rooted Android phones. However, since

the approach and implemented securities are different for each of the analyzed devices, in this

81

section, first, we presented their analysis separately and then a table that summarizes the results.
The analysis was focused on the authentication and authorization methods used for the APIs.
5.4.1. Naver Clova

During our research, we used the vulnerability in the Naver Clova app to extract APIs and other
artefacts from the app. The app is vulnerable to the Man-in-the-Middle attack due to the flaw in
the SSL certificate handling mechanism which lets third-party certificates to be used. For our
research, we used a Burp Suite proxy tool to intercept the traffic between the App and the cloud.
During the login process, Naver Clova detects proxy settings; therefore, we have to first login
without proxy settings. However, once the login process is passed, the subsequent requests can
be captured using the MITM attack. Using this method, we were able to extract the
communication APIs and the bearer token used for authorization of the API requests. The API
can be used to acquire alarm, reminder and alert information from the cloud by setting the
requested message type in the body of the API request as shown below. The bearer token is used
for authorization of the APIs.

In our research, apart from the network interception, we could not find the bearer token
anywhere else. In the app analysis, in the shared_prefrence folder clova.xml file saves access
token that says bearer token and a refresh token; however, using those tokens to request data
returns Unauthorized Error (401). Moreover, the length of the bearer token captured in the
network and the one that was found in the clova.xml file is different.

5.4.2. SKT Nugu

Like Naver Clova, SKT Nugu Android App is also vulnerable to Man-in-the-Middle attack
using proxy tools such as Burp Suite. Similar to the Naver Clova app, for the login process, the
app detects a proxy setting using the certificate information. Once the login process is passed

without the proxy setting, the subsequent requests can be captured using the MITM attack.

82

Using this method, we were able to capture the APIs requests and the access token along with
another user and device information. In SKT Nugu, for some of the APIs which are used to access
another service, additional identification tokens are also used. For instance, for Melon Music
Service request, Melon ID is required to access user data. Therefore, the user has to register
independently for the service and use that ID to access the service. Later, that ID is included in
the API request to access the service and acquire user data from the Melon service cloud.

5.4.3. Xiaomi Smart Home Kit

For Xiaomi smart home Kkit, the API extraction approach was different as the app has the
capability of detecting the proxy applications. However, through the reverse engineering the
android app and manual code injection, we were able to capture the API calls and the access
tokens for the APIs. We used adb logcat tool to capture the requests.

The service token is sent as a cookie with other information. After constructing the header and
the cookie values, we sent a request to the cloud using the extracted API; however, we got an
authorized error message, with the HTTP error code 401. That means the service token is used
for a one-time session. After that subsequent request has to use new tokens to access data from
the cloud, as a result, in our research, we could not access Xiaomi cloud data using the methods
we used to access user data from other devices’ cloud.

5.4.4. Sen.se Mother

For Sen.se Mother analysis, since the manufacturer is not supporting the device at the time of
writing this paper, we used old data that was generated and collected in 2017 in our laboratory.
Although through the forensic analysis of the Pocket Mother app, we were able to extract the
APIs, primarily, we used network analysis using DevTools integrated into the browser to extract
the APIs and associated security tokens. The advantage of using the network analysis is that it

gives the request and response headers and parameters in a structured way.

83

In Sen.se Mother, authorization tokens are used for some of the applications supported by the
sensors (like health and secret). However, the tokens are used only for one session. That means,
re-requesting the APIs with the authorization tokens results in an unauthorized error response.
The tokens were sent along with the cookies.

On the other hand, for applications such as door activity sensing and presence, the APIs did not
require any security. As a result, we were able to download JSON data from the Sen.se cloud
without any authorization tokens. Moreover, using the APIs we were able to change and delete
the configuration of the Cookies without security requirement. For these and other security issues
we discovered from the Companion app and the device communication, we tried to contact the
company. However, the company did not respond at all. Currently, Sen.se Mother is out of the
market and access to the cloud is also not possible. We think that the company run out of business

and unfortunately there was no alert or notification about the state during that time and afterwards.

Table 8: Summary of the cloud API security Methods implemented for the selected 10T devices

D App loT Type of API Implemented Security types

name Device = Application Types Authentication = Authorization = Reusability
1 Pocket Sen.se Multi- Unofficial Some use Some used the Some _used

Mother | Mother purpose Some none access token one-time
2 Nozzle Clova Al Speaker | Unofficial None Token reusable
3 | Aladdin Nugu Al Speaker | Unofficial Token Token reusable

. Xiaomi . .
H'c\)/lr:1e ign;r; pl\ljlrlé)lct)ge Unofficial Token Token 9522;?0mne

5.5. Forensic Implications of the Securities

In 10T digital forensics investigation, the digital evidence acquisition process addresses a
number of data sources in the 10T devices and their ecosystem. Companion apps on smartphones
and computers, network traffic between each communication section, backend cloud, the
hardware devices, and sensors are digital evidence sources in 10T devices.

However, digital investigators face different challenges in conducting a digital forensic

investigation in 10T devices. In addition to the specific challenges faced due to the nature of the

84

loT devices, traditional forensics challenges on smartphones, cloud, and network also apply to
the 10T investigations. More importantly, data protection security solutions implemented in each
of these sources are by far the most significant challenges to be faced by 10T forensic investigators.
Encryption technologies applied to smartphones, smartphone app’s data storage, API requests,
and network communications are the main challenges faced in today’s digital forensic
investigation [11], [54]. That is also the same as the IoT investigations since most of the data
acquisition process relies on traditional digital forensic techniques and tools. For instance, if
database encryption is applied to IoT companion apps’ SQLite databases, extracting digital
artefacts will be difficult if not impossible at all. Similarly, if the key and values of shared
preference files are encrypted or saved in a hashed format, there will be no way of understanding
the information in the files.

Moreover, researches on different 10T devices show that most of the user data is acquired from
the backend cloud. As pointed out by researchers such as [10], [11], the second main challenge
to a digital forensic investigation is cloud forensics. In cloud forensics, acquiring data can be
achieved using two methods. One is using subpoena from the court and requesting the cloud
service provider to hand in data. This has lots of challenges, including Jurisdictions and
collaborations requirements from the cloud service providers. The second method is using official
or unofficial interfaces provided by the cloud service provider for apps and application developers.
In order to acquire data through this method, using cloud APIs is a necessity. In APIs based data
acquisition, user credentials, cookies, tokens or a combination of those credentials might be
required to access the user data. However, as API securities get stronger, using the APIs to acquire
data will be challenging. For instance, if one-time session tokens are deployed for APIs
authorization and authentication, re-requesting data from the cloud will not be possible.

Likewise, communication securities, specifically encryption technologies applied to protect

network traffic pose challenges to 10T forensics in addition to the network forensic investigations

85

challenges. Due to this reason, most of the time, the network investigation results are used for
flow analysis in digital forensics investigations. In general, 10T network forensic investigation
face number of challenges due to the traditional network forensic challenges such as acquisition,
the integrity of the data, identifying the devices and seizure of the devices [80], [81].

Therefore, all the above challenges may apply to 10T investigations in the same way they apply
to the traditional digital forensic investigation. This is where the weakness in implemented
security solutions provides a gateway for loT forensic investigators. In other words, the security
vulnerabilities in 10T devices and their ecosystems provides a way for investigators in acquiring
digital evidence from IoT ecosystem [82]. The results of this thesis analysis also demonstrated
this claim. Based on the analysis results, we also developed a cloud data acquisition tool for three

of the analyzed devices. A brief description of the tools is provided in section 5.7.

5.6. Privacy Implications of the Securities

On the other hand, the security vulnerabilities pose privacy and safety danger to the IoT users
if exploited by criminals [52], [82], [83]. As stated in the introduction section, for instance, data
collected by the door sensor can be used to infer when the owners leave and return to the house.
These data can be used to plan attacks such as robbery to 10T owners. Moreover, 10T devices can
be exploited to activate or be inactive in certain situations where they supposed to act accordingly.
For instance, a fire smoke detector can be initiated when there is no fire or the other way it can
be disarmed in case of fire, which could be devastating.

From our research, we were able to collect sensitive user information used for the operation of
the 10T devices. For instance, in the case of SKT Nugu, we were able to acquire user’s TID while
from Naver Clova we obtained the user’s birthdate, name and email information, which could
have been used as a credential or registration information for other systems. Besides, in the case

of Sen.se Mother, we were able to change the configuration of the sensor’s application, such as

86

changing the door sensor application to presence application. This means that 10T security issues
are not solely privacy issues but also safety issues [83].

Therefore, 10T developers should consider protecting not only user data, which affects the
privacy of the user, but they should also protect the 10T devices themselves from cyber-attacks
that could endanger the safety of the users. For data protection in android client apps, the 10T
developers could follow the android security recommendations, that is applying data encryption
at the apps level. Besides, avoiding storing or transmitting sensitive information is another option.
On the other hand, if storing and processing sensitive information is mandatory to the operation
of the 10T devices, using anonymizing techniques such as hashing the information before storing
is also another recommended method.

From our studied loT devices, Naver Clova applied partial security on one of the shared
preference files, that is encrypting some of the key and value pair of the file. As a result, we were
not able to interpret parts of the information stored on the file. This kind of security techniques
helps to protect user data in the app’s storages in addition to the protection provided by the
Android OS. Besides, Sen.se Mother applied one-time session tokens for some of the APIs used
to transport user data for sensor applications such as secret (application to protect precious
treasures) and medication (sensor attached to medicine boxes) applications. Moreover, Xiaomi
smart home kit applied one-time session tokens to the cloud APIs. Those security methods
prevented us from accessing user data from the corresponding clouds.

On the other hand, Sen.se Mother developers did not apply security for some of the sensor
applications, which enabled us to change the configuration of the sensors without any credentials.
This could happen may be due to the lack of awareness on data and critical system classifications.
It might also be a lack of standards and guidelines to protect user data. Therefore, 10T developers

should also consider developing comprehensive data protection policies, standards and guidelines.

87

Regarding data transmission securities, end to end encryption technologies such as SSL/TLS is
recommended to protect data in transit.

In general, privacy protection could reach different aspects, including the legislation of
countries and data protection regulations in addition to the technical protection methods.
Therefore, covering those aspects goes beyond the scope of this thesis. However, based on our
analysis, we can say that 10T developers should apply the baseline security recommendations
provided by security frameworks such as OWASP Security Guidance in [12] for general security
considerations and specific guidelines for each component; for instance, such as android data
security guidelines in [16] for companion apps. Also, comprehensive API security methods
should be considered during API design and implementation. More importantly, they should
design and implement I0T securities, starting from the design stage based on risk assessments.
On the contrary, it should be noted that these privacy protection methods could bring challenges

to loT forensic investigators.
5.7. Cloud Data Acquisition Tools

The demonstration tool for cloud acquisition is A Graphical User Interface (GUI) based
developed using Python programming language. It uses the python request library to request the
APIs and fetch cloud data. The tool is developed for three different devices from the survey;
however, since the Sen.se Mother is already out of business and the cloud is not accessible, we
minimized the tool for two devices (SKT Nugu and Naver Clova).

To authorize the API requests, the tool requires the credentials from the user which are extracted
using the above analysis methods. In the case of Naver Clova, token and device 1D extracted from
the MITM attack while for SKT Nugu, either from the MITM attack or the app forensics analysis.

The tool provides the user with the option to select where to save the downloaded data.

88

However, as the intention of the tool is to demonstrate how to use the combination of the
security weaknesses in the loT ecosystem, it has limitations that need to be fixed for real
applications. For instance, data integrity verification methods such as a hashing algorithm can be
added to provide the hash values of the data during downloading. The links to the tool will be

provided when this thesis is made publically available.

SKT Mugu Data Bxtractor - 'S ¢ Naver Clova Data Extractor - x
Enter the required parameters from Network or App forensics analysis! Enter Bearer Token and Device ID from Network Analysis!
Data for the specified user will be downloaded. Data for the specified user will be downloaded
Download to: Browse | Download to: Browse
Device ID: Device ID | |
Auth Token Bearer Token
User ID: Download |
TID:
Melon ID:
Download

Figure 49: SKT Nugu and Naver Clova Al Speakers cloud Data Acquisition tools

5.8. Summary

In this chapter, we presented the discussion and summary of the results. From the apps data
storage security, we showed that almost all of the apps do not use data encryption, except Naver
Clova partially encrypt the clova.xml file. We also showed that 3 of the devices companion apps
are vulnerable to a MITM attack. From our APIs security analysis, we showed that Sen.se Mother
uses the one-time session for some the applications while Xiaomi uses for data access APIs.

On the other hand, both SKT Nugu and Naver Clova use authorization tokens that can be used
for multiple requests. Forensics implication of the results is also presented in this chapter. Finally,
a brief analysis of the privacy implications of that security weakness and an overview of the

recommended protection methods are discussed in this chapter.

89

CHAPTER 6. CONCLUSION

The main goal of this research was to identify how 10T application developers secure user data
and how those security techniques challenge the data acquisition process in the 10T ecosystem for
digital forensic investigation purposes.

In 10T forensics investigation, the digital evidence acquisition process addresses several data
sources in the 1oT devices and their ecosystem. Companion apps on smartphones and computers,
network traffic between each communication section, backend cloud, the hardware devices, and
sensors are digital evidence sources in the loT ecosystem.

However, digital investigators face different challenges in conducting a digital forensic
investigation in 10T devices. In addition to the specific challenges faced due to the nature of the
loT devices, traditional forensics challenges on smartphones, cloud, and network also apply to
the 10T investigations. More importantly, data protection security solutions implemented in each
of these sources are by far the greatest challenges to be faced by loT forensic investigators.
Encryption technologies applied to smartphones, smartphone app’s data storage, API security
methods, and network communications securities are the main challenges faced in today’s digital
forensic investigation. However, as IoT developers do not comprehensively address security
issues in the loT ecosystem, the vulnerabilities will assist digital forensic investigators.

We approached the research by making a series of research questions specific to data storage
security techniques and cloud data access interface security methods implemented in 10T client-
side apps, specifically, in Android companion apps.

To answer the research questions, we analyzed data security techniques and cloud data
acquisition possibilities for four smart home 10T devices — SKT Nugu, Naver Clova, Xiaomi

smart home kit and Sen.se Mother. We investigated the android version of the IoT companion

90

apps, network investigation between the apps and clouds, between the devices and the clouds, and
security of cloud APIs used in companion apps.

We used a combination of research processes and procedures to conduct our investigation. First,
we analyzed the companion apps using the static and dynamic analysis by reverse engineering the
apps using a variety of open source tools. Then we also performed live forensics analysis on the
apps using adb tools. After that, we used the SSL implementation vulnerabilities in the apps to
install third-party certificates and conduct Man-in-the-Middle attack using open source proxy
tools. Finally, we used Wireshark to investigate the communication traffic by mirroring the traffic
between the companion apps and the cloud and between the devices and the cloud.

From the apps data storage security, we showed that almost all of the companion apps we
investigated do not use data encryption. They use the default PRIVATE_MODE setting to store
the databases in the apps specific storage. As a result, as long as the databases can be extracted
from the smartphone, all user data saved by the app can be extracted for forensics purposes. For
instance, from the Mi Home app database, we extracted recorded devices log data for the door
sensors. The records include timestamps for the door open and close activities. Besides, except
Naver Clova, all the apps do not use data encryption methods in the shared preference. In the case
of the Naver Clova app, some of the key and value pairs are encrypted using the AES algorithm
but only in one of the files. That made it challenging in understanding the saved information. If
loT developers follow this kind of trend, which is expected as attack impacts increase, digital
forensic investigators may lose valuable evidence from 10T devices. Except for that challenge,
we were able to extract user credentials — such as username and password, cookies and tokens
from files in shared preference. From some of the apps, we also extracted user information like
email, location, and birthday information. In our investigation, we also showed that the apps have
the capability to write data on the external storage, but without any security considerations. This

enables anyone to read the data saved on the external storage that might be helpful for digital

91

forensic investigators. However, as 10T developers limit writing user data on external storage or
apply data encryption, investigators will face the challenges.

In our investigation, we also showed that three of the devices are vulnerable to MITM attack
between the companion apps and the cloud. The attack enabled us to extract cloud APIs and
tokens used to authorize the APIs. In the case of Sen.se Mother, we were able to intercept the
user’s username and password in plain text. However, as 0T developers correctly implement TLS
and limit third-party certificate acceptance options [84], digital investigators have to find other
options to extract valuable artefacts, including the cloud APIs. For instance, in our investigation,
we showed that the Mi Home app was not vulnerable to the MITM attack using the proxies. Thus,
we were forced to reverse the app and manually inject code to extract the cloud APIs and header
information.

On the other hand, from the network investigation between the devices and the cloud, we were
able to intercept insightful information, though most of the user data is encrypted regardless of
the SSL version used by the devices. For instance, SKT Nugu uses TLSv1.0, which is vulnerable
to a number of attacks and on the verge of obsoleteness, while the rest of the devices uses TLSv1.2.
Besides, SKT Nugu pushes firmware update as a plain text, while Naver Clova app sends app
crash analytic information and some user and device information as a plain text. In our research,
we did not try to exploit SKT Nugu using the flaw in the firmware update process. However,
researches such as [68] on Xiaomi smart home gateway demonstrate this possibility. Also, [67]
presents 10T device hacking using flaws in the firmware update process. Such vulnerabilities may
create chances for digital forensic investigators to acquire digital artefacts from 10T devices.

From our APIs security analysis, we showed that 10T developers do not implement API security
tokens properly. This resulted in accessing user data from the cloud using tokens extracted from
the apps network investigation and app storage forensics. From our researched devices, both SKT

Nugu and Naver Clova use authorization tokens that can be used for multiple requests. On the

92

other hand, Sen.se Mother used a one-time session to authorize the APIs for some of the
applications. However, Mother does not use any API authorization security for some of the
applications that enabled us to change the configuration of the cookies beyond accessing user data.

On the contrary, Xiaomi uses a one-time session for user data access APIs, that limited our
access to the user data saved on the cloud. Therefore, during our research, we could not access
user data from Xiaomi smart home kit cloud. This shows that as 10T developers follow such
securities, API based data acquisition from the cloud will be challenging, which forces digital
forensic investigators to rely on the service providers to acquire user data from IoT clouds.

From our research, we can say that smart home 10T developers do not follow recommended
security guidelines to comprehensively secure loT ecosystem, that helps digital forensics
investigators to acquire data from the 10T ecosystem. However, those security vulnerabilities also
create opportunities for bad guys to undermine the privacy and safety of 10T users. The results
from our studied devices, verify the existence of these double-sided problems in today’s smart

home 10T devices.

6.1. Future Works

This research focused primarily on the high-level analysis of data security methods used by
smart home 10T devices and their ecosystems. The analysis addressed the storage security in the
Android companion apps; and communication between the backend cloud and loT devices and
between the companion apps and the cloud. The research can be extended to address
communication between the sensors and the devices. Moreover, for this research, we considered
only 4 10T devices; therefore, there is a possibility to address a large set of devices. On the other
hand, in addition to the Android versions, there are also iOS and Windows versions of companion
apps that need to be addressed. Finally, the research can also be extended to include the app

security implemented to protect the apps from reverse engineering and dynamic analysis.

93

[1]

(2]

(3]
[4]

5]
(6]

[7]

(8]

[9]
[10]

[11]

[12]

[13]

[14]

[15]
[16]
[17]

[18]

REFERENCES

A. Berisha-Shaqiri, “Impact of Information Technology and Internet in Businesses,”
IMPACT OF INFORMATION TECHNOLOGY AND INTERNET IN BUSINESSES, vol. 1,
Mar. 2015.

“IoT in electronics is revolutionizing the way we live and work,” Internet of Things blog,
01-Nov-2017. [Online]. Awvailable: https://www.ibm.com/blogs/internet-of-things/iot-
connected-electronics/. [Accessed: 04-Jun-2019].

M. Roberto, B. Abyi, and R. Domenico, Towards a definition of the Internet of Things (1oT).
2017.

“What is the Internet of Things (IoT)? - Definition from Techopedia,” Techopedia.com.
[Online]. Awvailable: https://www.techopedia.com/definition/28247/internet-of-things-iot.
[Accessed: 30-Apr-2019].

S. M. A. Group et al., “Internet of Things (IoT): A Literature Review,” Journal of Computer
and Communications, vol. 03, p. 164, 2015.

“Gartner,” 2017. [Online]. Available: https://www.gartner.com/en/newsroom/press-
releases/2017-02-07-gartner-says-8-billion-connected-things-will-be-in-use-in-2017-up-
31-percent-from-2016. [Accessed: 06-Jan-2019]

M. R. Alam, M. B. I. Reaz, and M. Mohd Ali, “A Review of Smart Homes — Past, Present,
and Future,” IEEE Transactions on Systems, Man, and Cybernetics -Part C: Applications
and Reviews, vol. 42, pp. 1190-1203, Nov. 2012.

R. C. Hegarty, D. J. Lamb, and A. Attwood, “Digital Evidence Challenges in the Internet of
Things,” Proceedings of the Tenth International Network Conference (INC 2014), pp. 163—
172, 2014.

P. H. Rughani Ph D Assistant Professor, “loT Evidence Acquisition — Issues and
Challenges,” vol. 10, no. 5, pp. 1285-1293, 2017.

J. 1. James and Y. Jang, “Practical and Legal Challenges of Cloud Investigations,” The
Journal of the Institute of Webcasting, Internet and Telecommunication, vol. 14, no. 6, pp.
33-39, 2014.

D. Lillis, B. A. Becker, T. O’Sullivan, and M. Scanlon, “Current Challenges and Future
Research Areas for Digital Forensic Investigation,” in CDFSL, 2016, pp. 9-20.

“About The Open Web Application Security Project - OWASP.” [Online]. Available:
https://www.owasp.org/index.php/About_The_Open_Web_Application_Security Project.
[Accessed: 17-Jan-2019].

H. Altuwaijri and S. Ghouzali, “Android data storage security: A review,” Journal of King
Saud University - Computer and Information Sciences, Jul. 2018.

“App Manifest Overview,” Android Developers. [Online]. Available:
https://developer.android.com/guide/topics/manifest/manifest-intro. [Accessed: 10-Apr-
2019].

“Data and file storage overview,” Android Developers. [Online]. Available:
https://developer.android.com/guide/topics/data/data-storage. [Accessed: 09-Apr-2019].
“Security tips,” Android Developers. [Online]. Available:
https://developer.android.com/training/articles/security-tips. [Accessed: 10-Apr-2019].
“Full-Disk Encryption,” Android Open Source Project. [Online]. Available:
https://source.android.com/security/encryption/full-disk. [Accessed: 07-Jun-2019].
“Mobile Top 10 2016-M2-Insecure Data Storage - OWASP.” [Online]. Available:
https://www.owasp.org/index.php/Mobile_Top_10_2016-M2-Insecure_Data_Storage.
[Accessed: 10-Apr-2019].

94

[19]
[20]
[21]

[22]

[23]

[24]

[25]

[26]
[27]

[28]

[29]
[30]
[31]
[32]
[33]
[34]
[35]
[36]
[37]

[38]

[39]

“Telegram — a new era of messaging,” Telegram. [Online]. Available: https://telegram.org/.
[Accessed: 30-Apr-2019].

“WhatsApp,” WhatsApp.com. [Online]. Available: https://www.whatsapp.com/. [Accessed:
30-Apr-2019].

“KaKaoTalk,” kakaocorp.com. [Online]. Available:
Ilwww.kakaocorp.com/service/KakaoTalk. [Accessed: 30-Apr-2019].

“Application Program Interfaces (APIs),” Service Architecture. [Online]. Available:
https://www.service-architecture.com/articles/web-
services/application_program_interfaces_apis.html. [Accessed: 02-Apr-2019].

“What is REST — Learn to create timeless RESTful APIs.” [Online]. Available:
https://restfulapi.net/. [Accessed: 07-Jun-2019].

“SOAP Vs. REST: Difference of Web API Services.” [Online]. Available:
https://www.guru99.com/comparison-between-web-services.ntml. [Accessed: 02-Apr-
2019].

“Develop a secure API design in a cloud environment,” SearchCloudSecurity. [Online].
Available: https://searchcloudsecurity.techtarget.com/tip/Develop-a-secure-API-design-in-
a-cloud-environment. [Accessed: 18-Jan-2019].

“Credential stuffing - OWASP.” [Online]. Available:
https://www.owasp.org/index.php/Credential_stuffing. [Accessed: 07-Jun-2019].
“Fuzzing - OWASP.” [Online]. Available: https://www.owasp.org/index.php/Fuzzing.
[Accessed: 07-Jun-2019].

“OWASP Top 10 #10: Unprotected APIs [Updated 2018],” Infosec Resources, 05-Oct-2018.
[Online]. Awvailable: https://resources.infosecinstitute.com/owasp-top-10-10-unprotected-
apis/. [Accessed: 02-Apr-2019].

“REST API Security Essentials — REST API Tutorial.” [Online]. Available:
https://restfulapi.net/security-essentials/. [Accessed: 31-Mar-2019].

M. Brian, Web API Design - Crafting Interfaces that Developers Love. .

PG Student Velammal Engineering College, Chennai-66 and K. V. Kanmani, “Survey on
Restful Web Services Using Open Authorization (Oauth),” IOSR Journal of Computer
Engineering, vol. 15, no. 4, pp. 53-56, 2013.

C. M. Ramya, M. Shanmugaraj, and R. Prabakaran, “Study on ZigBee technology,” in 2011
3rd International Conference on Electronics Computer Technology, Kanyakumari, India,
2011, pp. 297-301.

“IoT technology stack - 10T devices, sensors, gateways and platforms,” i-SCOOP. [Online].
Available: https://www.i-scoop.eu/internet-of-things-guide/iot-technology-stack-devices-
gateways-platforms/. [Accessed: 07-Jun-2019].

A. Guzman and G. Aditya, 10T Penetration Testing - Cookbook. 2017.

X. Li, “A Review of Motivations of Illegal Cyber Activities,” Criminology & Social
Integration, vol. 25, no. 1, pp. 110-126, 2017.

S. Sicari, A. Rizzardi, L. A. Grieco, and A. Coen-Porisini, “Security, privacy and trust in
Internet of Things: The road ahead,” Computer Networks, vol. 76, pp. 146-164, Jan. 2015.
D. Airehrour, J. Gutierrez, and S. K. Ray, “Secure routing for internet of things: A survey,”
Journal of Network and Computer Applications, vol. 66, pp. 198-213, May 2016.

Y. Yang, L. Wu, G. Yin, L. Li, and H. Zhao, “A Survey on Security and Privacy Issues in
Internet-of-Things,” IEEE Internet of Things Journal, vol. 4, no. 5, pp. 1250-1258, Oct.
2017.

Z.Lingetal., “ToT Security: An End-to-End View and Case Study,” arXiv:1805.05853 [cs],
May 2018.

95

[40]
[41]
[42]
[43]

[44]

[45]

[46]

[47]
[48]

[49]
[50]

[51]

[52]

[53]

[54]

[55]
[56]

[57]
[58]
[59]
[60]
[61]

[62]

M. Ammar, G. Russello, and B. Crispo, “Internet of Things: A survey on the security of loT
frameworks,” Journal of Information Security and Appl, vol. 38, pp. 8-27, Feb. 2018.

S. Siboni et al., “Security Testbed for Internet-of-Things Devices,” IEEE Transactions on
Reliability, pp. 1-22, 2018.

X. Liu, Z. Zhou, W. Diao, Z. Li, and K. Zhang, “An Empirical Study on Android for Saving
Non-shared Data on Public Storage,” arXiv:1407.5410 [cs], Jul. 2014.

V. Jain, M. S. Gaur, V. Laxmi, and M. Mosbah, “Detection of SQLite Database
Vulnerabilities in Android Apps,” 2016, p. 11, 2016.

C. Rodriguez et al., “REST APIs: A Large-Scale Analysis of Compliance with Principles
and Best Practices,” in Web Engineering, vol. 9671, A. Bozzon, P. Cudre-Maroux, and C.
Pautasso, Eds. Cham: Springer International Publishing, 2016, pp. 21-39.

F. Petrillo, P. Merle, N. Moha, and Y.-G. Guéhéneuc, “Are REST APIs for Cloud
Computing Well-Designed? An Exploratory Study,” in Service-Oriented Computing, vol.
9936, Q. Z. Sheng, E. Stroulia, S. Tata, and S. Bhiri, Eds. Cham: Springer International
Publishing, 2016, pp. 157-170.

H. Chung, J. Park, and S. Lee, “Digital forensic approaches for Amazon Alexa ecosystem,”
Digital Investigation, vol. 22, pp. S15-S25, Aug. 2017.

“Amazon Echo data could hold the key to murder trial,” Information Age, 23-Feb-2017. .
C. Hauser, “In Connecticut Murder Case, a Fitbit Is a Silent Witness,” The New York Times,
22-Dec-2017.

K. M. S. Rahman, M. Bishop, and A. Holt, “Internet of Things Mobility Forensics,” 2016.
M. 1. Mazdadi, 1. Riadi, and A. Luthfi, “Live Forensics on RouterOS using API Services to
Investigate Network Attacks,” International Journal of Computer Science and Information
Security (1JCSIS), vol. 15, no. 2, pp. 406-410, 2017.

V. R. Kebande and I. Ray, “A generic digital forensic investigation framework for Internet
of Things (IoT),” in Proceedings - 2016 IEEE 4th International Conference on Future
Internet of Things and Cloud, FiCloud 2016, 2016, pp. 356-362.

N. Akatyev and J. I. James, “Evidence identification in IoT networks based on threat
assessment,” Future Generation Computer Systems, Nov. 2017.

V. R. Kebande, N. M. Karie, and H. S. Venter, “Adding Digital Forensic Readiness as a
Security Component to the IoT Domain,” International Journal on Advanced Science,
Engineering and Information Technology, vol. 8, no. 1, p. 1, Feb. 2018.

scar, “An Introduction To Challenges In Digital Forensics,” Forensic Focus - Articles, 29-
Jun-2017. .

scar, “Current Challenges In Digital Forensics,” Forensic Focus - Articles, 11-May-2016. .
E. Oriwoh and P. Sant, “The forensics edge management system: A concept and design,”
pp. 544-550, 2013.

Z. Zainal, “Case study as a research method,” p. 6, 2007.

B. Pan, Tools to work with android .dex and java .class files: pxb1988/dex2jar. 2019.

J. Decompiler, A standalone Java Decompiler GUI. Contribute to java-decompiler/jd-gui
development by creating an account on GitHub. 2019.

skylot, Dex to Java decompiler. Contribute to skylot/jadx development by creating an
account on GitHub. 2019.

Mobile Security Framework is an automated pen-testing framework for performing static
analysis, dynamic analysis.. Mobile Security Framework, 2019.

acpm, Android Package Inspector: dynamic analysis with api hooks, start unexported
activities and more. (Xposed Module) - ac-pm/Inspeckage. 2019.

96

[63]

[64]
[65]

[66]
[67]

[68]
[69]
[70]
[71]
[72]
[73]

[74]

(78]

[76]
[77]
[78]
[79]
(80]

[81]

(82]
(83]

[84]

“Automated Analysis with Inspeckage,” Infosec Resources, 02-Aug-2016. [Online].
Available: https://resources.infosecinstitute.com/android-hacking-and-security-part-24-
automated-analysis-with-inspeckage/. [Accessed: 30-Apr-2019].

“Python’s Requests Library (Guide) — Real Python.” [Online]. Available:
https://realpython.com/python-requests/. [Accessed: 07-Jun-2019].
“ITU | 2017 Global ICT Development Index.” [Online]. Available:

http://www.itu.int/net4/itu-d/idi/2017/index.html. [Accessed: 14-Apr-2019].

“SKT NUGU.” [Online]. Available: https://www.nugu.co.kr. [Accessed: 08-Apr-2019].

G. Aditya, 10T Hackers Handbook: An Ultimate Guide to Hacking the Internet of Things
and Learning loT Security. 2017.

D. Giese, “Having fun with [oT: Reverse Engineering and Hacking of Xiaomi IoT Devices,”
p. 86.

“Naver Clova.” [Online]. Available: https://clova.ai/ko. [Accessed: 08-Apr-2019].
“Xiaomi Mi Smart Home Kit: full specifications, photo | XIAOMI-MI.com.” [Online].
Available: https://xiaomi-mi.com/sockets-and-sensors/xiaomi-mi-smart-home-Kkit/.
[Accessed: 08-Apr-2019].

“Mother ¢ Sen.se.” [Online]. Available: https://sen.se/store/mother/. [Accessed: 17-Feb-
2018].

“IFTTT helps your apps and devices work together - IFTTT.” [Online]. Available:
https://ifttt.com/. [Accessed: 19-Feb-2018].

“Motion Cookies — Support * Sen.se.” [Online]. Available: https://sen.se/store/cookie/.
[Accessed: 24-Nov-2017].

“It’s Time to Disable TLS 1.0 (and All SSL Versions) If You Haven’t Already.” [Online].
Available: https://www.globalsign.com/en/blog/disable-tls-10-and-all-ssl-versions/.
[Accessed: 01-Apr-2019].

“TLS 1.0 is no longer used to secure communications | PCI Compliance,” comodo.com.
[Online]. Available: comodo.com. [Accessed: 01-Apr-2019].

Y. Liu, C. Zuo, Z. Zhang, S. Guo, and X. Xu, “An automatically vetting mechanism for SSL
error-handling vulnerability in android hybrid Web apps,” World Wide Web, vol. 21, no. 1,
pp. 127-150, Jan. 2018.

“CoAP — Constrained Application Protocol | Overview.” [Online]. Available:
http://coap.technology/. [Accessed: 08-Apr-2019].

“MQTT (https://mqtt.org/).” .

“6LoWPAN: Transmission of IPv6 Packets over IEEE 802.15.4 Networks.” [Online].
Available: https://www.nsnam.org/docs/models/html/sixlowpan.html. [Accessed: 08-Apr-
2019].

J. Buric and D. Delija, “Challenges in network forensics,” in 2015 38th International
Convention on Information and Communication Technology, Electronics and
Microelectronics (MIPRO), 2015, pp. 1382-1386.

S. Khan, A. Gani, A. W. A. Wahab, M. Shiraz, and I. Ahmad, “Network forensics: Review,
taxonomy, and open challenges,” Journal of Network and Computer Applications, vol. 66,
pp. 214-235, May 2016.

F. Servida and E. Casey, “loT forensic challenges and opportunities for digital traces,”
Digital Investigation, vol. 28, pp. S22-S29, Apr. 2019.

M. Schunter and A. Wespi, “Editorial: Special issue on loT security and privacy,” Computer
Networks, vol. 148, pp. 280-282, Jan. 2019.

“SslErrorHandler,” Android Developers. [Online]. Available:
https://developer.android.com/reference/android/webkit/SsIErrorHandler. [Accessed: 09-
Jun-2019].

97

SMART HOME IoT FORENSICS

2019

Master’s Degree

Birhanu, Addisu Afework
Department of International Studies

Advisors: Prof. Jang, Yunsik, Prof. Joshua, I. James

Smart home Internet of Things (1oT) are becoming the mainstream technologies that are being
integrated into today society. Recent cyber-attacks and researches on these devices indicate smart
home 10T developers do not design and implement data protection solutions comprehensively in
the 10T ecosystem. These security weaknesses have different implications for user privacy, safety
and digital forensic investigations. This thesis provides an analysis of data protection methods
implemented in smart home 10T devices and how the weaknesses can be applied to digital forensic
investigation purposes.

In this thesis, we included the analysis of four smart home loT devices (Sen.se Mother, Naver
Clova, SKT Nugu and Xiaomi Smart home) user data protection techniques to identify the
vulnerabilities that can be exploited to acquire user data for digital forensic investigation purpose.

To achieve the goal, we analyzed data security techniques and cloud data acquisition
possibilities for the selected smart home IoT devices. The investigation is conducted using a
combination of forensic analysis of companion apps on smartphones, network investigation
between the app and cloud, between the device and the cloud and security analysis of cloud APIs
used between companion apps and the cloud.

From the apps data storage security, we showed that all of the apps do not consider data

encryption. As a result, if the databases can be extracted from the smartphone, the stored data can

98

be extracted for forensics purposes. Similarly, except one of the devices’ companion app, all the
apps do not consider data encryption in the shared preference storage. On the other hand, we
identified that some of the devices use one-time session tokens for cloud APIs authorization.
Based on the research, we were able to acquire artefacts from smartphones and network
investigations without security challenges. Moreover, using those artefacts, we were able to
acquire user data from the cloud for three of the devices. While using such kind of vulnerabilities
helps digital forensics investigations to acquire user data from smart home loT ecosystem, they

also endanger users’ privacy and safety if exploited by hackers.

Keywords: Smart Home; 1oT; Internet of Things; loT Security; Digital Forensic Investigation;

Cloud API Security; App Data Security; Cloud Data; Privacy; Network Forensics

99

IoT X34

<
=]

|
K]

wt

2019

oR
]

EREE

7}

1

<
Sk

e DE]

A

1
A E L4 2], Joshua |. James

Ho

ojn

Sl

loT X (Al vhy, vlol® 2 &2u}, SKT

=

WLAZE Apoln] B

E

[e)

T

4714 2=}

1

ko)

b 1o

S A

Aol 37

o

T
ol

1

1
b

5]

[

A& 8k},

=

SEER

PAY &

1
=
A]

°
RS

-

A
AR

loT(Internet of Things)"d
=

o
)

o
;ou
P
o
X
il

)R)=

T, ARST) 2emhE

-
-T-

Fege
gl 7o 9]

ol
=
3L

=

7719k ZepeE Aol el

dloly ®et 7=
EE

1

k9
T

100

loT 3ol
2 mFL 10T & AR EE of

<

=

E

&l 4712} 2=m}

S

Y3t Feh-= Aol o] UEI 24}, vt

] ‘1_']?_—%_1]‘!

A
a

Gl

rl+1

WEA 24, 223 AEE o Z@ Aol A3} FepSE Alojo] 4 ALEH = REST

API 2] Het B4) 8-S thol)

mlm
rLl
ol
N
O
1-4
s
:L
rr

Ol e 9 dlolEl el Bete] HlolEl Esl

As BolErh 1 23, AvtEZAA Holguolxrt 2E5d & = 3, oW

dlolEl 7k 44 Hof el EA B 02 FEo] sbsetrhis v 2 B 5 glvh o Hlol
Agsh o A7 kA 2, g A 9]) F S A9 @ ThE PEL T 87 A AgaolA

itk Wuk ohjel, o el% ol NES Abgatel Al FA9 FergreA ALg
doleE 5T & AUk olsh L& FF AGHL A AL UAD EAA
FAE 2PHE E 0T 1A A4 dolEE F5atd mge FAW, A%
oF§-2 733, AHgAbe] Eebo WA 9ol il S glrk

FAo]: 2PLE &, 10T, A= 1B M, 1oT B.ob, Hx e 114 A, F249-= APIL B.F,)

dlol 8 Bet, Sek5-= HlolH, Zefo] WA, Y E] = =12

101

